Increased intracellular cAMP concentration plays a well established role in leukemic cell maturation. We previously reported that U937 cells stimulated by H2 receptor agonists, despite a robust increase in cAMP, fail to mature because of rapid H2 receptor desensitization and phosphodiesterase (PDE) activation. Here we show that intracellular cAMP levels not only in U937 cells but also in other acute myeloid leukemia cell lines are also regulated by multidrug resistance-associated proteins (MRPs), particularly MRP4. U937, HL-60, and KG-1a cells, exposed to amthamine (H2-receptor agonist), augmented intracellular cAMP concentration with a concomitant increase in the efflux. Extrusion of cAMP was ATP-dependent and probenecidsensitive, supporting that the transport was MRP-mediated. Cells exposed to amthamine and the PDE4 inhibitor showed enhanced cAMP extrusion, but this response was inhibited by MRP blockade. Amthamine stimulation, combined with PDE4 and MRP inhibition, induced maximal cell arrest proliferation. Knockdown strategy by shRNA revealed that this process was mediated by MRP4. Furthermore, blockade by probenecid or MRP4 knockdown showed that increased intracellular cAMP levels induce maturation in U937 cells. These findings confirm the key role of intracellular cAMP levels in leukemic cell maturation and provide the first evidence that MRP4 may represent a new potential target for leukemia differentiation therapy.
Increasing evidence supports the role of atrial natriuretic factor (ANF) in the modulation of gastrointestinal physiology. The effect of ANF on exocrine pancreatic secretion and the possible receptors and pathways involved were studied in vivo. Anesthetized rats were prepared with pancreatic duct cannulation, pyloric ligation, and bile diversion into the duodenum. ANF dose-dependently increased pancreatic secretion of fluid and proteins and enhanced secretin and CCK-evoked response. ANF decreased chloride secretion and increased the pH of the pancreatic juice. Neither cholinergic nor adrenergic blockade affected ANF-stimulated pancreatic secretion. Furthermore, ANF response was not mediated by the release of nitric oxide. ANF-evoked protein secretion was not inhibited by truncal vagotomy, atropine, or Nomega-nitro-l-arginine methyl ester administration. The selective natriuretic peptide receptor-C (NPR-C) receptor agonist cANP-(4-23) mimicked ANF response in a dose-dependent fashion. When the intracellular signaling coupled to NPR-C receptors was investigated in isolated pancreatic acini, results showed that ANF did not modify basal or forskolin-evoked cAMP formation, but it dose-dependently enhanced phosphoinositide hydrolysis, which was blocked by the selective PLC inhibitor U-73122. ANF stimulated exocrine pancreatic secretion in the rat, and its effect was not mediated by nitric oxide or parasympathetic or sympathetic activity. Furthermore, CCK and secretin appear not to be involved in ANF response. Present findings support that ANF exerts a stimulatory effect on pancreatic exocrine secretion mediated by NPR-C receptors coupled to the phosphoinositide pathway.
Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4) regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation. Sperm capacitation was performed in vitro by exposing bovine spermatozoa to bicarbonate 40 and 70 mM; cAMP; probenecid (a MRPs general inhibitor) and an adenosine type 1 receptor (A1 adenosine receptor) selective antagonist (DPCPX). Capacitation was assessed by chlortetracycline assay and lysophosphatidylcholine-induced acrosome reaction assessed by PSA-FITC staining. Intracellular and extracellular cAMP was measured by radiobinding the regulatory subunit of PKA under the same experimental conditions. MRP4 was detected by western blot and immunohistochemistry assays. Results showed that the inhibition of soluble adenylyl cyclase significantly inhibited bicarbonate-induced sperm capacitation. Furthermore, in the presence of 40 and 70 mM bicarbonate bovine spermatozoa synthesized and extruded cAMP. Interestingly, in the absence of IBMX (a PDEs inhibitor) cAMP efflux still operated in sperm cells, suggesting that cAMP extrusion would be a physiological process in the spermatozoa complementary to the action of PDE. Blockade of MRPs by probenecid abolished the efflux of the cyclic nucleotide resulting not only in the accumulation of intracellular cAMP but also in the inhibition of bicarbonate-induced sperm capacitation. The effect of probenecid was abolished by exposing sperm cells to cAMP. The high-affinity efflux pump for cAMP, MRP4 was expressed in bovine spermatozoa and localized to the midpiece of the tail as previously reported for soluble adenylyl cyclase and A1 adenosine receptor. Additionally, blockade of A1 adenosine receptor abolished not only bicarbonate-induced sperm capacitation but also that stimulated by cAMP. Present findings strongly support that cAMP efflux, presumably through MRP4, and the activation of A1 adenosine receptor regulate some events associated with bicarbonate-induced sperm capacitation, and further suggest a paracrine and/or autocrine role for cAMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.