Antimicrobial peptides (AMPs) are promising novel antibiotics since they have shown antimicrobial activity against a wide range of bacterial species, including multiresistant bacteria; however, toxicity is the major barrier to convert antimicrobial peptides into active drugs. A profound and proper understanding of the complex interactions between these peptides and biological membranes using biophysical tools and model membranes seems to be a key factor in the race to develop a suitable antimicrobial peptide therapy for clinical use. In the search for such therapy, different combined approaches with conventional antibiotics have been evaluated in recent years and demonstrated to improve the therapeutic potential of AMPs. Some of these approaches have revealed promising additive or synergistic activity between AMPs and chemical antibiotics. This review will give an insight into the possibilities that physicochemical tools can give in the AMPs research and also address the state of the art on the current promising combined therapies between AMPs and conventional antibiotics, which appear to be a plausible future opportunity for AMPs treatment.
In the present study we report for the first time the presence of S-layer proteins in Lactobacillus kefir and Lactobacillus parakefir isolated from kefir grains. Soluble whole-cell protein profile obtained either by mechanical disruption (X-press) or by a combined treatment with lysozyme and SDS on whole cells, showed a significant band of apparent molecular mass of 66–71 kDa as measured by SDS–PAGE. The intensity of this band was considerably reduced when cells were treated with 5 M-LiCl. The above mentioned proteins were recovered in the LiCl extracts. After dialysis and concentration, the proteins extracted were able to reassemble in a regular array. Negative staining of these protein preparations were analysed by transmission electron microscopy and a paracrystalline arrangement was seen. Thin sections of bacteria analysed by transmission electron micrographs showed an outermost layer over the bacterial cell wall, that was lost after the LiCl treatment. The production of this surface structure under different culture conditions was also evaluated. Finally, the relationship between the presence of S-layer proteins and surface properties (e.g. adhesion to Caco-2 cells, autoaggregation, and hemagglutination) was investigated.
The aim of this study was to evaluate fifty-three Lactobacillus plantarum isolates obtained from a Patagonian red wine, molecularly identified and typified using RAPD analysis, in order to select starter cultures for malolactic fermentation (MLF). The results obtained suggest a considerable genetic diversity, taking into account that all L. plantarum isolates were obtained from one cellar and one vintage. Based on the capacity to tolerate a concentration of 14 % ethanol in MRS broth for 2 days, eight isolates were selected for the subsequent analysis. The incidence of various wine stress factors (ethanol, acid pH, lysozyme and sulfur dioxide) on isolates growth was studied. Besides, glucosidase and tannase activities were evaluated, and the presence of genes involved in the synthesis of biogenic amines was examined by PCR. A previously characterized indigenous Oenococcus oeni strain was included with comparative purposes. Differences in technologically relevant characteristics were observed among the eight L. plantarum selected isolates, revealing an isolate-dependent behavior. Detectable glucosidase and tannase activities were found in all isolates. The presence of genes encoding histidine and tyrosine descarboxylases and putrescine carbamoyltransferase was not detected. The ability of L. plantarum isolates to grow and consume L-malic acid in simulated laboratory-scale vinifications revealed that two of them could be considered as possible MLF starter cultures for Patagonian red wines. These isolates will be subjected to further analysis, for a final winery technological characterization.
Considering that several health promoting properties are associated with kefir consumption and a reliable probiotic product requires a complete identification of the bacterial species, the present work evaluates several proved markers of probiotic potential of eleven isolates of homofermentative lactobacilli isolated from kefir grains and molecular identification and genotypic diversity. Using restriction analysis of amplified ribosomal DNA (ARDRA) and analysis of the 16S-23S rRNA internal spacer region we confirmed that all homofermentative lactobacilli belong to the species Lactobacillus plantarum. RAPD-PCR analysis allowed the discrimination of lactobacilli in five clusters. All isolates exhibited high resistance to bile salt. High survival after one hour of exposure to pH 2.5 was observed in Lb. plantarum CIDCA 8313, 83210, 8327 and 8338. All isolates were hydrophilic and non autoaggregative. Isolate CIDCA 8337 showed the highest percentage of adhesion among strains. All tested lactobacilli had strong inhibitory power against Salmonella typhimurium and Escherichia coli. Seven out of eleven isolates showed inhibition against Sal. enterica and five isolates were effective against Sal. gallinarum. Only CIDCA 8323 and CIDCA 8327 were able to inhibit Sal. sonnei. We did not find any correlation between the five clusters based on RAPD-PCR and the probiotic properties, suggesting that these isolates have unique characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.