Key Points After being killed by artesunate, malaria parasites are expelled from red cells and then these pitted red cells reenter the circulation. When many pitted red cells are produced during therapy, their delayed clearance a few weeks later triggers hemolytic episodes.
The antimicrobial activity of various naturally occurring microbicidal peptides was reported to result from their interaction with microbial membrane. In this study, we investigated the cytotoxicity of the hemolytic peptide dermaseptin S4 (DS4) and the nonhemolytic peptide dermaseptin S3 (DS3) toward human erythrocytes infected by the malaria parasite Plasmodium falciparum. Both DS4 and DS3 inhibited the parasite's ability to incorporate [ 3 H]hypoxanthine. However, while DS4 was toxic toward both the parasite and the host erythrocyte, DS3 was toxic only toward the intraerythrocytic parasite. To gain insight into the mechanism of this selective cytotoxicity, we labeled the peptides with fluorescent probes and investigated their organization in solution and in membranes. In Plasmodium-infected cells, rhodamine-labeled peptides interacted directly with the intracellular parasite, in contrast to noninfected cells, where the peptides remained bound to the erythrocyte plasma membrane. Binding experiments to phospholipid membranes revealed that DS3 and DS4 had similar binding characteristics. Membrane permeation studies indicated that the peptides were equally potent in permeating phosphatidylserine/phosphatidylcholine vesicles, whereas DS4 was more permeative with phosphatidylcholine vesicles. In aqueous solutions, DS4 was found to be in a higher aggregation state. Nevertheless, both DS3 and DS4 spontaneously dissociated to monomers upon interaction with vesicles, albeit with different kinetics. In light of these results, we propose a mechanism by which dermaseptins permeate cells and affect intraerythrocytic parasites.
The cDNA encoding Pfmap-2, an enzyme of the human malaria parasite Plasmodium falciparum, was cloned, sequenced, and expressed in Escherichia coli. The open reading frame carried by the Pfmap-2 cDNA encodes a 508-amino acid polypeptide of 59.2 kDa with maximal homology to mitogen-activated protein kinases (MAPKs) from various organisms. The purified recombinant enzyme displayed functional characteristics of MAPKs such as (i) ability to undergo autophosphorylation, (ii) ability to phosphorylate myelin basic protein, a classical MAPK substrate, (iii) regulation of kinase activity by a MAPK-specific phosphatase, and (iv) ability to be activated by component(s) present in cell extracts. Mutational analysis of the recombinant protein allowed the identification of residues that are important for enzymatic activity. Northern blot analysis and immunofluorescence assays indicated that Pfmap-2 is expressed specifically in gametocytes, the form that is responsible for transmission of the parasite to the mosquito vector. Gametocyte extracts activated recombinant Pfmap-2 more efficiently than extracts from asexual parasites, which is consistent with this stage specificity. Despite its overall high level of homology to MAPKs, Pfmap-2 presents the peculiarity of not possessing the conserved threonine-X-tyrosine activation motif usually found in enzymes of this family; instead, it has a threonine-serine-histidine at the same location. This atypical feature formed the basis for a detailed analysis of the primary structure of MAPKs, allowing us to define an operational MAPK signature, which is shared by Pfmap-2. The fact that no MAPK from vertebrates diverge in the activation motif suggests that the fine mechanisms of Pfmap-2 regulation may offer an opportunity for antimalarial drug targeting.The spread of drug resistance in Plasmodium falciparum, the parasite responsible for the lethal form of human malaria, represents one of the most pressing public health problems in many parts of the world (1, 2). Parasites that are resistant to anti-malarials are selected under drug pressure in treated patients, develop into male and female gametocytes that are infective to the mosquito vector, and hence can be transmitted to new human hosts. One possible way to limit the spread of P. falciparum resistance might consist in interfering with sexual development of the parasite, thereby preventing transmission. A rational approach to this goal requires a detailed knowledge of the molecular mechanisms of Plasmodium sexual development.After invasion of a red blood cell, a merozoite can either embark on a new cycle of asexual multiplication leading to the formation of a schizont ultimately releasing 8 -32 new merozoites or undergo sexual differentiation (gametocytogenesis), a process characterized by cell cycle arrest, a shift in the transcriptional repertoire, and morphological changes (reviewed in Refs. 3-4). Mature gametocytes maintain their cell cycle arrested while in the blood of the human host, but this block is relieved immediately after th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.