The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England 1 , was first identified in the UK in late summer to early autumn 2020 2 . Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.Phylogenetic studies carried out by the UK COVID-19 Genomics Consortium (COG-UK) (https://www.cogconsortium.uk) 8 provided the first indication that B.1.1.7 has an unusual accumulation of substitutions and was growing at a higer rate than other circulating lineages. We investigated time trends in the frequency of sampling VOC genomes and the proportion of PCR tests exhibiting SGTF across the UK, which we calibrated as a biomarker of VOC infection. Using multiple approaches and both genetic and SGTF data, we conclude that B.1.1.7 is associated with a higher reproduction number (R) than previous non-VOC lineages.We examined whole-genome SARS-CoV-2 sequences from randomly sampled residual materials obtained from community-based COVID-19 testing in England, collected between 1 October 2020 and 16 January 2021. These data included 31,390 B.1.1.7 sequences for which the time and location of sample collection were known. Over the same period, 52,795 non-VOC genomes were collected. VOC sequences were initially concentrated in London (n = 9,134), the South East (n = 5,609), and the East of England (n = 4,413), but is now widely distributed across England.
The ongoing COVID-19 pandemic poses a severe threat to public health worldwide. We combine data on demography, contact patterns, disease severity, and health care capacity and quality to understand its impact and inform strategies for its control. Younger populations in lower income countries may reduce overall risk but limited health system capacity coupled with closer inter-generational contact largely negates this benefit. Mitigation strategies that slow but do not interrupt transmission will still lead to COVID-19 epidemics rapidly overwhelming health systems, with substantial excess deaths in lower income countries due to the poorer health care available. Of countries that have undertaken suppression to date, lower income countries have acted earlier. However, this will need to be maintained or triggered more frequently in these settings to keep below available health capacity, with associated detrimental consequences for the wider health, well-being and economies of these countries.
Highlights d Increasing frequency of SARS-CoV-2 D614G is consistent with a selective advantage d Phylodynamic analyses do not show significantly different growth of D614G clusters d There is no association of D614G replacement with greater severity of infection d The D614G replacement is associated with higher viral loads and younger patient age
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.