Influenza virus remains a constant public health threat, owing to its ability to evade immune surveillance through rapid genetic drift and reassortment. Monoclonal antibody (mAb)-based immunotherapy is a promising strategy for disease control. Here we use a human Ab phage display library and H5 hemagglutinin (HA) ectodomain to select ten neutralizing mAbs (nAbs) with a remarkably broad range among Group 1 influenza viruses, including the H5N1 “bird flu” and the H1N1 “Spanish flu” strains. Notably, nine of the Abs utilize the same germline gene, VH1-69. The crystal structure of one mAb bound to H5N1 HA reveals that only the heavy chain inserts into a highly conserved pocket in the HA stem, inhibiting the conformational changes required for membrane fusion. Our studies indicate that nAbs targeting this pocket could provide broad protection against both seasonal and pandemic influenza A infections.
Molecular and antigenic analyses of three influenza viruses isolated from outbreaks of severe respiratory disease in racing greyhounds revealed that they are closely related to H3N8 equine influenza virus. Phylogenetic analysis indicated that the canine influenza virus genomes form a monophyletic group, consistent with a single interspecies virus transfer. Molecular changes in the hemagglutinin suggested adaptive evolution in the new host. The etiologic role of this virus in respiratory disease was supported by the temporal association of rising antibody titers with disease and by experimental inoculation studies. The geographic expansion of the infection and its persistence for several years indicate efficient transmission of canine influenza virus among greyhounds. Evidence of infection in pet dogs suggests that this infection may also become enzootic in this population.
To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.