Glioblastoma is the most common brain primary malignant tumor with the highest mortality. Boron neutron capture therapy (BNCT) can efficiently kill cancer cells on the cellular scale, with high accuracy, short course and low side-effects, which is regarded as the most promising therapy for malignant brain tumors like glioma. As the keypoint of BNCT, all boron delivery agents currently in clinical use are beset by insufficient tumor uptake, especially in the tumor nucleus, which limits the clinical application of BNCT. In this study, nuclear targeting of boron is achieved by DOX-CB, consisting of doxorubicin (DOX) and carborane (CB) utilizing the nuclear translocation property of DOX. The nucleus of GL261 cells takes up almost three times the concentration of boron required for BNCT. To further kill glioma and inhibit recurrence, a new multifunctional nanoliposome delivery system DOX-CB@lipo-pDNA-iRGD is constructed. It combines DOX-CB with immunotherapy strategy of blocking macrophage immune checkpoint pathway CD47-SIRPα by CRISPR-Cas9 system, coupling BNCT with immunotherapy simultaneously. Compared with clinical drug Borocaptate Sodium (BSH), DOX-CB@lipo-pDNA-iRGD significantly enhances the survival rate of tumor-bearing mice, reduces tumor stemness, and improves the prognosis. The excellent curative effect of this nanoliposome delivery system provides an insight into the combined treatment of BNCT. Graphical Abstract
Inefficient tumor penetration caused by the characteristics of tumor microenvironments is a primary obstacle to improving drug delivery efficiency, which restricts the chemotherapy drug efficacy. One such promising idea is to construct micro/nanomotors (MNMs) as an effective delivery vehicle by way of producing autonomous motion and converting exogenous stimuli or external energies from the surrounding environment into mechanical forces. In this research, the Pt/DOX nanomotor was prepared, and the enhanced diffusion and positive chemotaxis driven by substrates were verified in vitro, proof of the enhanced cellular uptake and deep penetration of Pt/DOX. As a novel nanovehicle, Pt/DOX potentially provides an intriguing approach to foster the tumor-deep penetration and enhance the drug delivery efficiency.
There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a “flame-retarding blanket” in the pre-metastatic niche specifically to extinguish the “fire” of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation.
Background Sleep deprivation (SD)-induced cognitive impairment is highly prevalent worldwide and has attracted widespread attention. The temporal and spatial oscillations of circadian genes are severely disturbed after SD, leading to a progressive loss of their physiological rhythms, which in turn affects memory function. However, there is a lack of research on the role of circadian genes and memory function after SD. Therefore, the present study aims to investigate the relationship between circadian genes and memory function and provide potential therapeutic insights into the mechanism of SD-induced memory impairment. Methods Gene expression profiles of GSE33302 and GSE9442 from the Gene Expression Omnibus (GEO) were applied to identify differentially expressed genes (DEGs). Subsequently, both datasets were subjected to Gene Set Enrichment Analysis (GSEA) to determine the overall gene changes in the hippocampus and brain after SD. A Gene Oncology (GO) analysis and Protein-Protein Interaction (PPI) analysis were employed to explore the genes related to circadian rhythm, with their relationship and importance determined through a correlation analysis and a receiver operating characteristic curve (ROC), respectively. The water maze experiments detected behavioral changes related to memory function in SD rats. The expression of circadian genes in several critical organs such as the brain, heart, liver, and lungs and their correlation with memory function was investigated using several microarrays. Finally, changes in the hippocampal immune environment after SD were analyzed using the CIBERSORT in R software. Results The quality of the two datasets was very good. After SD, changes were seen primarily in genes related to memory impairment and immune function. Genes related to circadian rhythm were highly correlated with engagement in muscle structure development and circadian rhythm. Seven circadian genes showed their potential therapeutic value in SD. Water maze experiments confirmed that SD exacerbates memory impairment-related behaviors, including prolonged escape latencies and reduced numbers of rats crossing the platform. The expression of circadian genes was verified, while some genes were also significant in the heart, liver, and lungs. All seven circadian genes were also associated with memory markers in SD. The contents of four immune cells in the hippocampal immune environment changed after SD. Seven circadian genes were related to multiple immune cells. Conclusions In the present study, we found that SD leads to memory impairment accompanied by changes in circadian rhythm-related genes. Seven circadian genes play crucial roles in memory impairment after SD. Naïve B cells and follicular helper T cells are closely related to SD. These findings provide new insights into the treatment of memory impairment caused by SD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.