The rise of two-dimensional (2D) crystalline superconductors has opened a new frontier of investigating unconventional quantum phenomena in low dimensions. However, despite the enormous advances achieved towards understanding the underlying physics, practical device applications like sensors and detectors using 2D superconductors are still lacking. Here, we demonstrate nonreciprocal antenna devices based on atomically thin NbSe2. Reversible nonreciprocal charge transport is unveiled in 2D NbSe2 through multi-reversal antisymmetric second harmonic magnetoresistance isotherms. Based on this nonreciprocity, our NbSe2 antenna devices exhibit a reversible nonreciprocal sensitivity to externally alternating current (AC) electromagnetic waves, which is attributed to the vortex flow in asymmetric pinning potentials driven by the AC driving force. More importantly, a successful control of the nonreciprocal sensitivity of the antenna devices has been achieved by applying electromagnetic waves with different frequencies and amplitudes. The device’s response increases with increasing electromagnetic wave amplitude and exhibits prominent broadband sensing from 5 to 900 MHz.
Recently, 2D ferromagnetic materials have aroused wide interest for their magnetic properties and potential applications in spintronic and topological devices. However, their actual applications have been severely hindered by intricate challenges such as the unclear spin arrangement. In particular, the evolution of spin texture driven by high-density electron current, which is an essential condition for fabricating devices, remains unclear. Herein, the current-pulse-driven spin textures in 2D ferromagnetic material Fe3GeTe2 have been thoroughly investigated by in situ Lorentz transmission electron microscopy. The dynamic experiments reveal that the stripe domain structure in the AB and AC planes can be broken and rearranged by the high-density current. In particular, the density of domain walls can be modulated, which offers an avenue to achieve a high-density domain structure. This phenomenon is attributed to the weak interlayer exchange interaction in 2D metallic ferromagnetic materials and the strong disturbance from the high-density current. Therefore, a bubble domain structure and random magnetization in Fe3GeTe2 can be acquired by synchronous current pulses and magnetic fields. These achievements reveal domain structure transitions driven by the current in 2D metallic magnetic materials and provide references for the practical applications.
Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (TC) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their TC, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-TC 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that TC of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the TC enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, TC can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.
WTe2, as a type-II Weyl semimetal, has 2D Fermi arcs on the (001) surface in the bulk and 1D helical edge states in its monolayer. These features have recently attracted wide attention in condensed matter physics. However, in the intermediate regime between the bulk and monolayer, the edge states have not been resolved owing to its closed band gap which makes the bulk states dominant. Here, we report the signatures of the edge superconductivity by superconducting quantum interference measurements in multilayer WTe2 Josephson junctions and we directly map the localized supercurrent. In thick WTe2 ($\sim60{\rm{\ nm}})$, the supercurrent is uniformly distributed by bulk states with symmetric Josephson effect ( $| {I_c^ + ( B )} | = | {I_c^ - ( B )} |\ $). In thin WTe2 (10 nm), however, the supercurrent becomes confined to the edge and its width reaches up to $1.4{\rm{\ \mu m}}$ and exhibits non-symmetric behavior $| {I_c^ + ( B )} | \ne | {I_c^ - ( B )} |$. The ability to tune the edge domination by changing thickness and the edge superconductivity establishes WTe2 as a promising topological system with exotic quantum phases and a rich physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.