The behavior of transcriptomes and epigenomes in hybrids of heterotic parents is of fundamental interest. Here, we report highly integrated maps of the epigenome, mRNA, and small RNA transcriptomes of two rice (Oryza sativa) subspecies and their reciprocal hybrids. We found that gene activity was correlated with DNA methylation and both active and repressive histone modifications in transcribed regions. Differential epigenetic modifications correlated with changes in transcript levels among hybrids and parental lines. Distinct patterns in gene expression and epigenetic modifications in reciprocal hybrids were observed. Through analyses of single nucleotide polymorphisms from our sequence data, we observed a high correlation of allelic bias of epigenetic modifications or gene expression in reciprocal hybrids with their differences in the parental lines. The abundance of distinct small RNA size classes differed between the parents, and more small RNAs were downregulated than upregulated in the reciprocal hybrids. Together, our data reveal a comprehensive overview of transcriptional and epigenetic trends in heterotic rice crosses and provide a useful resource for the rice community.
Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid over its parents in many traits, but the underlying molecular basis remains elusive. To investigate whether DNA methylation plays a role in heterosis, we compared at single-base-pair resolution the DNA methylomes of Arabidopsis thaliana Landsberg erecta and C24 parental lines and their reciprocal F1 hybrids that exhibited heterosis. Both hybrids displayed increased DNA methylation across their entire genomes, especially in transposable elements. Interestingly, increased methylation of the hybrid genomes predominantly occurred in regions that were differentially methylated in the two parents and covered by small RNAs, implying that the RNAdirected DNA methylation (RdDM) pathway may direct DNA methylation in hybrids. In addition, we found that 77 genes sensitive to methylome remodeling were transcriptionally repressed in both reciprocal hybrids, including genes involved in flavonoid biosynthesis and two circadian oscillator genes CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL. Moreover, growth vigor of F1 hybrids was compromised by treatment with an agent that demethylates DNA and by abolishing production of functional small RNAs due to mutations in Arabidopsis RNA methyltransferase HUA ENHANCER1. Together, our data suggest that genome-wide remodeling of DNA methylation directed by the RdDM pathway may play a role in heterosis.
Repression of photomorphogenesis in Arabidopsis thaliana requires activity of the COP9 signalosome (CSN), CDD, and COP1 complexes, but how these three complexes work in concert to accomplish this important developmental switch has remained unknown. Here, we demonstrate that Arabidopsis CULLIN4 (CUL4) associates with the CDD complex and a common catalytic subunit to form an active E3 ubiquitin ligase both in vivo and in vitro. The partial loss of function of CUL4 resulted in a constitutive photomorphogenic phenotype with respect to morphogenesis and light-regulated gene expression. Furthermore, CUL4 exhibits a synergistic genetic interaction with COP10 and DET1. Therefore, this CUL4-based E3 ligase is essential for the repression of photomorphogenesis. This CUL4-based E3 ligase appears to associate physically with COP1 E3 ligase and positively regulates the COP1-dependent degradation of photomorphogenesis-promoting transcription factors, whereas the CSN controls the biochemical modification of CUL4 essential for E3 activity. Thus, this study suggests a biochemical activity connection between CSN and CDD complexes in their cooperation with COP1 in orchestrating the repression of photomorphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.