While convenient solution-based procedures have been realized for the synthesis of colloidal perovskite nanocrystals, the impact of surfactant ligands on the shape, size, and surface properties still remains poorly understood, which calls for a more detailed structure-morphology study. Herein we have systematically varied the hydrocarbon chain composition of carboxylic acids and amines to investigate the surface chemistry and the independent impact of acid and amine on the size and shape of perovskite nanocrystals. Solution phase studies on purified nanocrystal samples by (1)H NMR and IR spectroscopies have confirmed the presence of both carboxylate and alkylammonium ligands on surfaces, with the alkylammonium ligand being much more mobile and susceptible to detachment from the nanocrystal surfaces during polar solvent washes. Moreover, the chain length variation of carboxylic acids and amines, ranging from 18 carbons down to two carbons, has shown independent correlation to the size and shape of nanocrystals in addition to the temperature effect. We have additionally demonstrated that employing a more soluble cesium acetate precursor in place of the universally used Cs2CO3 results in enhanced processability without sacrificing optical properties, thus offering a more versatile recipe for perovskite nanocrystal synthesis that allows the use of organic acids and amines bearing chains shorter than eight carbon atoms. Overall our studies have shed light on the influence of ligand chemistry on crystal growth and stabilization of the nanocrystals, which opens the door to functionalizable perovskite nanocrsytals through surface ligand manipulation.
All-inorganic CsPbX3 (X = Cl, Br or I) perovskite nanocrystals have attracted extensive interest recently due to their exceptional optoelectronic properties. In an effort to improve the charge separation and transfer following efficient exciton generation in such nanocrystals, novel functional nanocomposites were synthesized by the in situ growth of CsPbBr3 perovskite nanocrystals on two-dimensional MXene nanosheets. Efficient excited state charge transfer occurs between CsPbBr3 NCs and MXene nanosheets, as indicated by significant photoluminescence (PL) quenching and much shorter PL decay lifetimes compared with pure CsPbBr3 NCs. The as-obtained CsPbBr3/MXene nanocomposites demonstrated increased photocurrent generation in response to visible light and X-ray illumination, attesting to the potential application of these heterostructure nanocomposites for photoelectric detection. The efficient charge transfer also renders the CsPbBr3/MXene nanocomposite an active photocatalyst for the reduction of CO2 to CO and CH4. This work provides a guide for exploration of perovskite materials in next-generation optoelectronics, such as photoelectric detectors or photocatalyst.
Despite the exceptional optoelectronic characteristics of the emergent perovskite nanocrystals, the ionic nature greatly limits their stability, and thus restricts their potential applications. Here we have adapted a self-assembly strategy to access a rarely reported nanorod suprastructure that provide excellent encapsulation of perovskite nanocrystals by polymer-grafted graphene oxide layers. Polyacrylic acid-grafted graphene oxide (GO-g-PAA) was used as a surface ligand during the synthesis of the CsPbX perovskite nanocrystals (NCs), yielding particles (5-12 nm) with tunable halide compositions that were homogeneously embedded in the GO-g-PAA matrix. The resulting NC-GO-g-PAA exhibits a higher photoluminescence quantum yield than previously reported encapsulated NCs while maintaining an easily tunable bandgap, allowing for emission spanning the visible spectrum. The NC-GO-g-PAA hybrid further self-assembles into well-defined nanorods upon solvent treatment. The resulting nanorod morphology imparts extraordinary chemical stability toward protic solvents such as methanol and water and much enhanced thermal stability. The introduction of barrier layers by embedding the perovskite NCs in the GO-g-PAA matrix, together with its unique assembly into nanorods, provides a novel strategy to afford robust perovskite emissive materials with environmental stability that may meet or exceed the requirement for optoelectronic applications.
The potential optoelectronic applications of perovskite nanocrystals (NCs) are primarily limited by major material instability arising from the ionic nature of the NC lattice. Herein, we introduce a facile and effective strategy to prepare extremely stable CsPbX3 NC-polymer composites. NC surfaces are passivated with reactive methacrylic acid (MA) ligands, resulting in the formation of homogenous nanocubes (abbreviated as MA-NCs) with a size of 14-17 nm and a photoluminescence quantum yield (PLQY) above 80%. The free double bonds on the surface then serve as chemically addressable synthetic handles, enabling UV-induced radical polymerization. Critically, a bromide-rich environment is developed to prevent NC sintering. The composites obtained from copolymerizing MA-NCs with hydrophobic methyl methacrylate (MMA) and methacrylisobutyl polyhedral oligomeric silsesquioxane (MA-POSS) monomers exhibit enhanced properties compared to previously reported encapsulated NCs, including higher QYs, remarkable chemical stability towards water, and much enhanced thermal stability. The good solubility of the composite in organic solvent further enables its use as a solution processable luminescent ink, used here for fabrication of white light-emitting diodes (WLED) with high luminous effciency and excellent color rendering index. The resulting fluorescent and stable NC ink opens the door to potential scalable and robust optoelectronic applications.
All-inorganic cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, or I) present broad applications in the field of optoelectronics due to their excellent photoluminescence (PL), narrow spectral bandwidth, and wide spectral tunability. However, their poor stability limits their practical application. In this work, we successfully use an in situ crystallization strategy for growing and cladding CsPbBr3 perovskite nanocrystals in poly(vinylidene difluoride) (PVDF). The CsPbBr3 nanocrystals in the as-fabricated CsPbBr3@PVDF composites have an average diameter of 16–18 nm and a strong PL emission (537 nm), with a photoluminescence quantum yield exceeding 30%. In addition, the fabricated CsPbBr3@PVDF composites present improved resistance to heat and water preserving with remarkable optical performance, owing to the effective protection of PVDF. Moreover, the CsPbBr3 nanocrystals generated in PVDF can withstand temperatures up to 170 °C and can be completely immersed in water for 60 days while still retaining high PL intensity, which facilitate the practical application of CsPbBr3 perovskite nanocrystals. These CsPbBr3@PVDF composite films with remarkable optical performances and superior anti-interference ability have broad application prospects in optoelectronics as well as good potential as temperature sensors in mechanical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.