The close vicinity of cancer cells undergoing epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) at the invasive front of tumors suggests that these two cell type may mutually interact. We show that mesenchymal-like breast cancer cells activate macrophages to a TAM-like phenotype by GM-CSF. Reciprocally, CCL18 from TAMs induces cancer cell EMT, forming a positive feedback loop, in coculture systems and humanized mice. Inhibition of GM-CSF or CCL18 breaks this loop and reduces cancer metastasis. High GM-CSF expression in breast cancer samples is associated with more CCL18(+) macrophages, cancer cell EMT, enhanced metastasis, and reduced patient survival. These findings suggest that a positive feedback loop between GM-CSF and CCL18 is important in breast cancer metastasis.
BackgroundTumor-associated macrophages (TAMs) are alternatively activated cells induced by interleukin-4 (IL-4)-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs) circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells.ResultsWe utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO) that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway.ConclusionsWe conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.
Chemotherapy has been reported to induce epithelialmesenchymal transition (EMT) in tumor cells, which is a critical step in the process of metastasis leading to cancer spreading and treatment failure. However, the underlying mechanisms of chemotherapy-induced EMT remain unclear, and the involvement of microRNAs (miRNA) in this process is poorly understood. To address these questions, we established stable chemotherapy-resistant tongue squamous cell carcinoma (TSCC) cell lines CAL27-res and SCC25-res by exposing the parental CAL27 and SCC25 lines to escalating concentrations of cisplatin for 6 months. CAL27-res and SCC25-res cells displayed mesenchymal features with enhanced invasiveness and motility. MiRNA microarray illustrated that miR-200b and miR-15b were the most significantly downregulated microRNAs in CAL27-res cells. Ectopic expression of miR-200b and miR-15b with miRNA mimics effectively reversed the phenotype of EMT in CAL27-res and SCC25-res cells, and sensitized them to chemotherapy, but inhibition of miR-200b and miR-15b in the sensitive lines with anti-sense oligonucleotides induced EMT and conferred chemoresistance. Retrieving the expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a target for miR-200b and miR-15b, in the presence of the miRNA mimics by transfecting CAL27-res cells with pcDNA3.1-BMI1-carrying mutated seed sequences of miR-200b or miR-15b at its 3 0 -UTR recapitulated chemotherapy-induced EMT. In vivo, enforced miR-200b or miR-15b expression suppressed metastasis of TSCC xenografts established by CAL27-res cells. Clinically, reduced miR-200b or miR-15b expression was associated with chemotherapeutic resistance in TSCCs and poor patient survival. Our data suggest that reduced expression of miR-200b and miR-15b underscores the mechanisms of chemotherapy-induced EMT in TSCC, and may serve as therapeutic targets to reverse chemotherapy resistance in tongue cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.