Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant (k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks.
The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic diVerentiation in order to provide useful information for eVective management and utilization. A total of 1,160 SSR alleles at 59 SSR loci were detected including 97 unique and 485 low-frequency alleles, which indicated great richness and uniqueness of genetic variation in this core collection. Seven clusters were inferred by STRUCTURE analysis, which is in good agreement with a neighbor-joining tree. The cluster subdivision was also supported by highly signiWcant pairwise F st values and was generally in accordance with diVerences in planting area and sowing season. The cluster HSuM, which contains accessions collected from the region between 32.0 and 40.5°N, 105.4 and 122.2°E along the central and downstream parts of the Yellow River, was the most genetically diverse of the seven clusters. This provides the Wrst molecular evidence for the hypotheses that the origin of cultivated soybean is the Yellow River region. A high proportion (95.1%) of pairs of alleles from diVerent loci was in LD in the complete dataset. This was mostly due to overall population structure, since the number of locus pairs in LD was reduced sharply within each of the clusters compared to the complete dataset. This shows that population structure needs to be accounted for in association studies conducted within this collection. The low value of LD within the clusters can be seen as evidence that much of the recombination events in the past have been maintained in soybean, Wxed in homozygous self-fertilizing landraces.
A novel coronavirus, the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), was identified as the causative agent of SARS. The profile of specific antibodies to individual proteins of the virus is critical to the development of vaccine and diagnostic tools. In this study, 13 recombinant proteins associated with four structural proteins (S, E, M and N) and five putative uncharacterized proteins (3a, 3b, 6, 7a and 9b) of the SARS-CoV were prepared and used for screening and monitoring their specific IgG antibodies in SARS patient sera by protein microarray. Antibodies to proteins S, 3a, N and 9b were detected in the sera from convalescent-phase SARS patients, whereas those to proteins E, M, 3b, 6 and 7a were undetected. In the detectable specific antibodies, anti-S and anti-N were dominant and could persist in the sera of SARS patients until week 30. Among the rabbit antisera to recombinant proteins S3, N, 3a and 9b, only anti-S3 serum showed significant neutralizing activity to the SARS-CoV infection in Vero E6 cells. The results suggest (1) that anti-S and anti-N antibodies are diagnostic markers and in particular that S3 is immunogenic and therefore is a good candidate as a subunit vaccine antigen; and (2) that, from a virus structure viewpoint, the presence in some human sera of antibodies reacting with two recombinant polypeptides, 3a and 9b, supports the hypothesis that they are synthesized during the virus cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.