Ischemia and reperfusion injury (IRI) is an inevitable event in conventional organ transplant procedure and is associated with significant mortality and morbidity post-transplantation. We hypothesize that IRI is avoidable if the blood supply for the organ is not stopped, thus resulting in optimal transplant outcomes. Here we described the first case of a novel procedure called ischemia-free organ transplantation (IFOT) for patients with end-stage liver disease. The liver graft with severe macrovesicular steatosis was donated from a 25-year-old man. The recipient was a 51-year-old man with decompensated liver cirrhosis and hepatocellular carcinoma. The graft was procured, preserved, and implanted under continuous normothermic machine perfusion. The recipient did not suffer post-reperfusion syndrome or vasoplegia after revascularization of the allograft. The liver function test and histological study revealed minimal hepatocyte, biliary epithelium and vascular endothelium injury during preservation and post-transplantation. The inflammatory cytokine levels were much lower in IFOT than those in conventional procedure. Key pathways involved in IRI were not activated after allograft revascularization. No rejection, or vascular or biliary complications occurred. The patient was discharged on day 18 post-transplantation. This marks the first case of IFOT in humans, offering opportunities to optimize transplant outcomes and maximize donor organ utilization.
We used stable isotope techniques to investigate water utilization of two native trees, Sabina vulgaris Ant. and Artemisia ordosica Krasch., and one introduced tree, Salix matsudana Koidz., in the semiarid Mu‐Us desert, Inner Mongolia, China. The study site was in a region where there has been a decline in agricultural productivity, caused by severe desertification over the past several decades. S. matsudana is used extensively for reforestation to protect farms and cultivated lands from shifting sand dunes. We identified water sources for each tree species by comparing the stable isotopes δD and δ18O in water in stems, soil, and groundwater. We also measured δ13C levels in leaves to evaluate the intrinsic water‐use efficiency (WUE) of each plant. Comparison of isotopes showed that S. vulgaris and S. matsudana consume relatively deep soil water as well as groundwater, whereas A. ordosica uses only shallow soil water. The δ13C measurements indicated that S. vulgaris has exclusively high WUE, whereas that of the other species was typical of temperate‐region C3 plants. The water source data plus WUE data suggest that planted S. matsudana uses groundwater freely, whereas native plants conserve water. Thus, reforestation with S. matsudana might cause irreversible groundwater shortages. Corresponding Editor: E. A. Holland.
Background MicroRNAs (miRNAs) play a pivotal role in hepatocellular carcinoma (HCC) progression and have been confirmed to participate in the carcinogenesis and development of HCC. However, the relationship between miR-497-5p and HCC remains unclear. Methods Kaplan–Meier curve analysis and the log-rank test were used to investigate the efficacy of miR-497-5p on overall survival (OS) and disease-free survival (DFS) in patients with HCC. According to in vitro experiments, programmed cell death 4 (PDCD4) was a target of miR-497-5p by the dual-luciferase activity assay. The efficacy of PDCD4 on cell proliferation and metastasis in HCC was examined by transwell assays, CCK-8 assays and reverse transcription quantitative PCR (RT-qPCR). Additionally, we conducted a luciferase activity reporter assay to confirm the interaction between lncRNA XIST and miR-49-5p. Then, to evaluate the relationship between lncRNA XIST and miR-497-5p, several mechanistic experiments, including qRT-PCR, Western blotting, transwell assays and tumor xenograft assays, were performed. Results miR-497-5p was upregulated in HCC tissues, and high expression of miR-497-5p resulted in increases in tumor size and tumor number and a higher tumor-node-metastasis (TNM) stage and Edmondson grade in patients with HCC. Silencing miR-497-5p inhibited the proliferation and migration of HCC cells. PDCD4, which was downregulated in HCC tissues, was shown to be a target of miR-497-5p and was negatively correlated with the expression of miR-497-5p. lncRNA XIST was found to act as a miR-497-5p sponge and to regulate the level of PDCD4, which is targeted by miR-497-5p. lncRNA XIST was observed to be downregulated in the HCC tissues and positively correlated with the expression of PDCD4. Conclusions Our findings reveal that the XIST/miR-497-5p/PDCD4 axis participates in HCC development and that XIST could be used as a biomarker of HCC.
Fatty liver disease is one of the leading causes of chronic damage in western countries. Approximately 25% of adults in the United States have fatty livers in the absence of excessive alcohol consumption, a condition termed nonalcoholic fatty liver disease (NAFLD). Little is known about the prevalence and genetic background of NAFLD or the factors that determine its development. In this study, we used the Gene-Cloud of Biotechnology Information bioinformatics platform to carry out a comprehensive bioinformatics analysis identifying differentially expressed genes (DEGs), key biological processes and intersecting pathways. We imported 3 Gene Expression Omnibus datasets (GSE31803, GSE49541, and GSE63067). Then, we assessed the expression of the DEGs in clinical samples. We found that CD24 was the only gene co-expressed in all 3 datasets. “Glycolysis/gluconeogenesis”, “p53 signaling pathway” and “glycine, serine and threonine metabolism” were 3 common pathways related to the fatty liver process. In NAFLD tissues, CD24, COL1A1, LUM, THBS2 and EPHA3 were upregulated, and PZP was downregulated. CD24 is a core gene among these DEGs and have not yet been studied of its impact on NAFLD. Co-expressed genes, common biological processes and intersecting pathways identified in the study might play an important role in NAFLD progression. Further studies are needed to elucidate the mechanism of these potential genes and pathways in NAFLD.
Aim: To explore molecular mechanisms underlying liver ischemia-reperfusion injury (IRI). Materials & methods: Four Gene Expression Omnibus datasets comprising liver transplantation data were collected for a comprehensive analysis. A proteomic analysis was performed and used for correlations analysis with transcriptomic. Results & conclusion: Ten differentially expressed genes were co-upregulated in four Gene Expression Omnibus datasets, including ATF3, CCL4, DNAJB1, DUSP5, JUND, KLF6, NFKBIA, PLAUR, PPP1R15A and TNFAIP3. The combined analysis demonstrated ten coregulated genes/proteins, including HBB, HBG2, CA1, SLC4A1, PLIN2, JUNB, HBA1, MMP9, SLC2A1 and PADI4. The coregulated differentially expressed genes and coregulated genes/proteins formed a tight interaction network and could serve as the core factors underlying IRI. Comprehensive and combined omics analyses revealed key factors underlying liver IRI, and thus having potential clinical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.