Abstract. Nitro-aromatic compounds (NACs) were measured hourly at a rural site in China during wintertime to monitor the changes due to local and regional impacts of biomass burning (BB). Concurrent and continuous measurements of the concentrations of 16 NACs in the gas and particle phases were performed with a time-of-flight chemical ionization mass spectrometer (CIMS) equipped with a Filter Inlet for Gases and AEROsols (FIGAERO) unit using iodide as the reagent ion. NACs accounted for <2 % of the mass concentration of organic matter (OM) and total particulate matter (PM), but the total particle mass concentrations of these compounds can reach as high as 1000 ng m−3 (299 ng m−3 avg), suggesting that they may contribute significantly to the radiative forcing effects of atmospheric particles. Levels of gas-phase NACs were highest during the daytime (15:00–16:00 local time, LT), with a smaller night-time peak around 20:00 LT. Box-model simulations showed that this occurred because the rate of NAC production from gas-phase sources exceeded the rate of loss, which occurred mainly via the OH reaction and to a lesser degree via photolysis. Data gathered during extended periods with high contributions from primary BB sources (resulting in 40 %–60 % increases in NAC concentrations) were used to characterize individual NACs with respect to gas–particle partitioning and the contributions of regional secondary processes (i.e. photochemical smog). On days without extensive BB, secondary formation was the dominant source of NACs, and NAC levels correlated strongly with the ambient ozone concentration. Analyses of individual NACs in the regionally aged plumes sampled on these days allowed precursors such as phenol and catechol to be linked to their NAC derivatives (i.e. nitrophenol and nitrocatechol). Correlation analysis using the high time resolution data and box-model simulation results constrained the relationships between these compounds and demonstrated the contribution of secondary formation processes. Furthermore, 13 of 16 NACS were classified according to primary or secondary formation process. Primary emission was the dominant source (accounting for 60 %–70 % of the measured concentrations) of 5 of the 16 studied NACs, but secondary formation was also a significant source. Photochemical smog thus has important effects on brown carbon levels even during wintertime periods dominated by primary air pollution in rural China.
Water-soluble organic aerosol (WSOA) constitutes a large fraction of organic aerosol (OA) and plays an important role in affecting aerosol hygroscopicity and cloud condensation nuclei formation. Here, we characterized WSOA in fine particles that were collected at ground level and at 260 m on a meteorological tower in Beijing in winter using offline aerosol mass spectrometry (AMS) and compared them with the simultaneous real-time online AMS measurements. Our results showed large increases in WSOA from nonheating season to heating season by 43% and 53% at ground level and at 260 m, respectively. WSOA was highly oxidized in winter with a higher oxygen-to-carbon ratio (O/C = 0.69) at 260 m than at ground level (0.63). On average, WSOA contributed 47% and 52% to the total OA at ground level and at 260 m, respectively. Positive matrix factorization analysis further showed that primary OA was the dominant source of WSOA (52−61%) with coal combustion (CCOA) and biomass burning OA (BBOA) being two major contributors. The vertical differences in water-soluble CCOA and BBOA, however, were very different with ubiquitously higher CCOA at 260 m than at ground level. Comparatively, more than 50% of secondary OA in winter was found to be water-insoluble, highlighting the influences of fossil emissions. The observed high water-solubilities of CCOA (42−53%) and BBOA (61−78%) may have significant implications in severe haze formation in winter in Beijing through a positive feedback mechanism between substantial increases in primary emissions during heating season and the subsequent changes in aerosol liquid water content, radiative forcing, and boundary layer, which is not yet considered in chemical-transport models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.