The PAX3-FKHR fusion protein is present in a majority of alveolar rhabdomyosarcomas associated with increased aggressiveness and poor prognosis. To better understand the molecular pathogenesis of PAX3-FKHR, we carried out the first, unbiased genome-wide identification of PAX3-FKHR binding sites and associated target genes in alveolar rhabdomyosarcoma. The data shows that PAX3-FKHR binds to the same sites as PAX3 at both MYF5 and MYOD enhancers. The genome-wide analysis reveals that the PAX3-FKHR sites are (a) mostly distal to transcription start sites, (b) conserved, (c) enriched for PAX3 motifs, and (d) strongly associated with genes overexpressed in PAX3-FKHR-positive rhabdomyosarcoma cells and tumors. There is little evidence in our data set for PAX3-FKHR binding at the promoter sequences. The genome-wide analysis further illustrates a strong association between PAX3 and E-box motifs in these binding sites, suggestive of a common coregulation for many target genes. We also provide the first direct evidence that FGFR4 and IGF1R are the targets for PAX3-FKHR. The map of PAX3-FKHR binding sites provides a framework for understanding the pathogenic roles of PAX3-FKHR, as well as its molecular targets to allow a systematic evaluation of agents against this aggressive rhabdomyosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.