BackgroundRecent studies have linked non-alcoholic fatty liver disease (NAFLD) to a reduced bone mineral density (BMD). We aimed to detect the quantitative association of liver fat content (LFC) and serum alanine aminotransferase (ALT) with BMD in a middle-aged and elderly Chinese population.MethodsThe lumbar spine, hip and whole body BMDs were measured using dual-energy x-ray absorptiometry (Lunar iDXA, GE Healthcare) in 1659 Chinese (755 men and 1028 postmenopausal women) from Shanghai Changfeng community. Liver fat content was quantified via an ultrasound quantitative method. Multivariate linear regression analyses were carried out to determine the independent association of LFC and serum ALT with BMD and bone metabolic biomarkers. We also attempted to investigate the synergistic association between LFC and ALT as risk factors for bone mineral loss in Chinese.ResultsSubjects with higher LFC had significantly lower BMD at all skeletal sites. Univariate correlation analysis showed that both LFC and ALT were inversely associated with BMD at the spine (r = −0.116, P < 0.001 and r = −0.102, P = 0.005), hip (r = −0.095, P = 0.014 and r = −0.075, P = 0.041) and whole body sites (r = −0.134, P < 0.001 and r = −0.164, P < 0.001) in men. After confounders were controlled for, LFC and ALT remained associated with BMD and bone formation biomarkers in men, but not postmenopausal women. When both NAFLD and elevation of ALT were present, there was a significant synergistic worsening of the BMDs at all bone sites.ConclusionsLiver fat content and serum ALT were inversely correlated with BMD in middle-aged and elderly men. The underlying mechanism might relate to a reduction in osteoblast activity. Elevation of the hepatotoxic biomarker ALT may indicate high risk for osteoporosis in patients with NAFLD.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-016-0766-3) contains supplementary material, which is available to authorized users.
Osteocalcin regulates energy metabolism in an active undercarboxylated/uncarboxylated form. However, its role on the development of non‐alcoholic fatty liver disease (NAFLD) is still controversial. In the current study, we investigated the causal relationship of circulating osteocalcin with NAFLD in two human cohorts and studied the effect of uncarboxylated osteocalcin on liver lipid metabolism through animal models. We analyzed the correlations of serum total/uncarboxylated osteocalcin with liver steatosis/fibrosis in a liver biopsy cohort of 196 participants, and the causal relationship between serum osteocalcin and the incidence/remission of NAFLD in a prospective community cohort of 2055 subjects from Shanghai Changfeng Study. Serum total osteocalcin was positively correlated with uncarboxylated osteocalcin (r = 0.528, p < .001). Total and uncarboxylated osteocalcin quartiles were inversely associated with liver steatosis, inflammation, ballooning, and fibrosis grades in both male and female participants (all p for trend <.05). After adjustment for confounding glucose, lipid, and bone metabolism parameters, the male and female participants with lowest quartile of osteocalcin still had more severe liver steatosis, with multivariate‐adjusted odds ratios (ORs) of 7.25 (1.07–49.30) and 4.44 (1.01–19.41), respectively. In the prospective community cohort, after a median of 4.2‐year follow‐up, the female but not male participants with lowest quartile of osteocalcin at baseline had higher risk to develop NAFLD (hazard ratio [HR] = 1.90; 95% confidence interval [CI] 1.14–3.16) and lower chance to achieve NAFLD remission (HR = 0.56; 95% CI 0.31–1.00). In wild‐type mice fed a Western diet, osteocalcin treatment alleviated hepatic steatosis and reduced hepatic SREBP‐1 and its downstream proteins expression. In mice treated with osteocalcin for a short term, hepatic SREBP‐1 expression was decreased without changes of glucose level or insulin sensitivity. When SREBP‐1c was stably expressed in a human SREBP‐1c transgenic rat model, the reduction of lipogenesis induced by osteocalcin treatment was abolished. In conclusion, circulating osteocalcin was inversely associated with NAFLD. Osteocalcin reduces liver lipogenesis via decreasing SREBP‐1c expression. © 2020 American Society for Bone and Mineral Research (ASBMR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.