Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Background N6-methyladenosine (m6A) is the most abundant modification in mRNA of humans. Emerging evidence has supported the fact that m6A is comprehensively involved in various diseases especially cancers. As a crucial reader, YTHDF2 usually mediates the degradation of m6A-modified mRNAs in m6A-dependent way. However, the function and mechanisms of m6A especially YTHDF2 in prostate cancer (PCa) still remain elusive. Methods To investigate the functions and mechanisms of YTHDF2 in PCa, in vitro, in vivo biofunctional assays and epigenetics experiments were performed. Endogenous expression silencing of YTHDF2 and METTL3 was established with lentivirus-based shRNA technique. Colony formation, flow cytometry and trans-well assays were performed for cell function identifications. Subcutaneous xenografts and metastatic mice models were combined with in vivo imaging system to investigate the phenotypes when knocking down YTHDF2 and METTL3. m6A RNA immunoprecipitation (MeRIP) sequencing, mRNA sequencing, RIP-RT-qPCR and bioinformatics analysis were mainly used to screen and validate the direct common targets of YTHDF2 and METTL3. In addition, TCGA database was also used to analyze the expression pattern of YTHDF2, METTL3 and the common target LHPP in PCa, and their correlation with clinical prognosis. Results The upregulated YTHDF2 and METTL3 in PCa predicted a worse overall survival rate. Knocking down YTHDF2 or METTL3 markedly inhibited the proliferation and migration of PCa in vivo and in vitro. LHPP and NKX3–1 were identified as the direct targets of both YTHDF2 and METTL3. YTHDF2 directly bound to the m6A modification sites of LHPP and NKX3–1 to mediate the mRNA degradation. Knock-down of YTHDF2 or METTL3 significantly induced the expression of LHPP and NKX3–1 at both mRNA and protein level with inhibited phosphorylated AKT. Overexpression of LHPP and NKX3–1 presented the consistent phenotypes and AKT phosphorylation inhibition with knock-down of YTHDF2 or METTL3. Phosphorylated AKT was consequently confirmed as the downstream of METTL3/YTHDF2/LHPP/NKX3–1 to induce tumor proliferation and migration. Conclusion We propose a novel regulatory mechanism in which YTHDF2 mediates the mRNA degradation of the tumor suppressors LHPP and NKX3–1 in m6A-dependent way to regulate AKT phosphorylation-induced tumor progression in prostate cancer. We hope our findings may provide new concepts of PCa biology.
Resveratrol, a naturally occurring polyphenolic antioxidant compound present in grapes and red wine, has been reported to hold various biochemical responses. In this preliminary study, we evaluate the chemopreventive potential of resveratrol against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with resveratrol resulted in a significant decrease in cell viability. Resveratrol induced apoptosis through the modulation of Bcl-2 family proteins and activation of caspase 9 and caspase 3 followed by poly(ADP-ribose) polymerase degradation. Treatment with resveratrol led to G 1 phase cell cycle arrest in T24 cells by activation of p21 and downregulation of cyclin D1, cyclindependent kinase 4, and phosphorylated Rb. Resveratrol also inhibited the phosphorylation of Akt, whereas the phosphorylation of p38 MAPK was enhanced. In addition, resveratrol treatment decreased the expression of vascular endothelial growth factor and fibroblast growth factor-2, which might contribute to the inhibition of tumor growth on the bladder cancer xenograft model. These findings suggest that reveratrol could be an important chemoprevention agent for bladder cancer. (Cancer Sci 2010; 101: 488-493)
Recent evidence suggests that m6A modifications regulate the progressions of several types of tumors. YTHDF2, an m6A reader, has been implicated in the regulation of hepatocellular carcinoma (HCC). miR-493-3p has been defined as tumor suppressor that inhibits the progressions of several types of cancers. However, the functions and mechanisms of YTHDF2 and the indirect m6A regulated role of miR-493-3p in prostate cancer (PCa) remains to be elusive. In this study, immuno-histochemical (IHC) staining and chromogenic in situ hybridization (CISH) were performed to find YTHDF2 was frequently upregulated but miR-493-3p was downregulated in both PCa tissues and cell lines (DU-145 and PC3) which was negatively correlated with each other. Knock down of YTHDF2 significantly elevated m6A levels, and inhibited the cell proliferation and migration of DU-145 and PC3 cell lines. The dual-luciferase reporter assay confirmed YTHDF2 as the direct target of miR-493-3p. In addition, forced expression of miR-493-3p consistently elevated the m6A levels and inhibited proliferation and migration with the knock down of YTHDF2. In contrast, overexpression of YTHDF2 and inhibition of miR-493-3p conversely reduced m6A levels. Additionally, the rescue experiments revealed that inhibition of miR-493-3p abrogated the suppression of proliferation and migration induced by si-YTHDF2. To conclude, YTHDF2 and miR-493-3p, as two crucial m6A regulators, are involved in the progression of PCa by indirectly modulating m6A levels. In view of these promising results, YTHDF2 and miR-493-3p may provide new insights into the carcinogenesis and new potential therapeutic targets for PCa.
Emerging evidence has suggested that microRNAs (miRNAs) have an important role in tumor development and progression by regulating diverse cellular pathways. Here we describe the function and regulation network of miR-433 in bladder cancer (BCa). miR-433 is frequently downregulated in BCa tissues compared with adjacent non-cancerous tissues. Epigenetic mechanisms may be involved in the regulation of miR-433 expression. Enforced expression of miR-433 significantly inhibits proliferation, colony formation, migration, and invasion in BCa cells. In addition, miR-433 inhibits the epithelial–mesenchymal transition (EMT) in BCa cells by regulating c-Met/Akt/GSK-3β/Snail signaling pathway. Both c-Met and CREB1 are downstream target genes of miR-433. CREB1 can also indirectly regulate c-Met/Akt/GSK-3β/Snail signaling via MITF. Furthermore, CREB1 expression is an independent prognostic factor for overall survival in patients with BCa. Finally, there appears to exist a reciprocal regulation between c-Met and miR-433/miR-409-3p. Taken together, this study reveals that miR-433-c-MET/CREB1-Akt/GSK-3β/Snail signaling is critical to EMT in BCa. Targeting the pathway described here may open up new prospects to restrict metastatic progression of BCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.