Treatment with GS-5806 reduced the viral load and the severity of clinical disease in a challenge study of healthy adults. (Funded by Gilead Sciences; ClinicalTrials.gov number, NCT01756482.).
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children and is responsible for as many as 199,000 childhood deaths annually worldwide. To support the development of viral therapeutics and vaccines for RSV, a human adult experimental infection model has been established. In this report, we describe the provenance and sequence of RSV Memphis-37, the low-passage clinical isolate used for the model's reproducible, safe, experimental infections of healthy, adult volunteers. The predicted amino acid sequences for major proteins of Memphis-37 are compared to nine other RSV A and B amino acid sequences to examine sites of vaccine, therapeutic, and pathophysiologic interest. Human T- cell epitope sequences previously defined by in vitro studies were observed to be closely matched between Memphis-37 and the laboratory strain RSV A2. Memphis-37 sequences provide baseline data with which to assess: (i) virus heterogeneity that may be evident following virus infection/transmission, (ii) the efficacy of candidate RSV vaccines and therapeutics in the experimental infection model, and (iii) the potential emergence of escape mutants as a consequence of experimental drug treatments. Memphis-37 is a valuable tool for pre-clinical research, and to expedite the clinical development of vaccines, therapeutic immunomodulatory agents, and other antiviral drug strategies for the protection of vulnerable populations against RSV disease.
BackgroundViral culture plaque morphology in human cell lines are markers for growth capability and cytopathic effect, and have been used to assess viral fitness and select pre-attenuation candidates for live viral vaccines. We classified RSV plaque morphology and analyzed the relationship between plaque morphology as compared to subgroup, viral load and clinical severity of infection in infants and children.MethodsWe obtained respiratory secretions from 149 RSV-infected children. Plaque morphology and viral load was assessed within the first culture passage in HEp-2 cells. Viral load was measured by PCR, as was RSV subgroup. Disease severity was determined by hospitalization, length of stay, intensive care requirement, and respiratory failure.ResultsPlaque morphology varied between individual subjects; however, similar results were observed among viruses collected from upper and lower respiratory tracts of the same subject. Significant differences in plaque morphology were observed between RSV subgroups. No correlations were found among plaque morphology and viral load. Plaque morphology did not correlate with disease severity.ConclusionsPlaque morphology measures parameters that are viral-specific and independent of the human host. Morphologies vary between patients and are related to RSV subgroup. In HEp-2 cells, RSV plaque morphology appears unrelated to disease severity in RSV-infected children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.