The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota. Microbiota composition and ecological network had distinctive features at each sampled stage, in accordance with functional maturation of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life.
Emerging evidence has linked the gut microbiome to human obesity. We performed a metagenome-wide association study and serum metabolomics profiling in a cohort of lean and obese, young, Chinese individuals. We identified obesity-associated gut microbial species linked to changes in circulating metabolites. The abundance of Bacteroides thetaiotaomicron, a glutamate-fermenting commensal, was markedly decreased in obese individuals and was inversely correlated with serum glutamate concentration. Consistently, gavage with B. thetaiotaomicron reduced plasma glutamate concentration and alleviated diet-induced body-weight gain and adiposity in mice. Furthermore, weight-loss intervention by bariatric surgery partially reversed obesity-associated microbial and metabolic alterations in obese individuals, including the decreased abundance of B. thetaiotaomicron and the elevated serum glutamate concentration. Our findings identify previously unknown links between intestinal microbiota alterations, circulating amino acids and obesity, suggesting that it may be possible to intervene in obesity by targeting the gut microbiota.
The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.