ApoE has been implicated in Alzheimer´s disease, atherosclerosis,
and other unresolvable inflammatory conditions but a common mechanism of action
remains elusive. We found in ApoE-deficient mice that oxidized lipids activated
the classical complement cascade (CCC) resulting in leukocyte infiltration of
the choroid plexus (ChP). All human ApoE isoforms attenuated CCC activity via
high-affinity binding to the activated CCC-initiating C1q protein
(KD~140-580 pM) in vitro; and C1q-ApoE
complexes emerged as markers for ongoing complement activity of diseased ChPs,
Aβ plaques, and atherosclerosis in vivo. C1q-ApoE
complexes in human ChPs, Aβ plaques, and arteries correlated with
cognitive decline and atherosclerosis, respectively. Treatment with siRNA
against C5 which is formed by all complement pathways, attenuated murine ChP
inflammation, Aβ-associated microglia accumulation, and atherosclerosis.
Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation and
reducing C5 attenuates disease burden.
SummaryTertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.