T graphene, a two-dimensional carbon allotrope with tetrarings, is investigated by first-principles calculations. We demonstrate that buckled T graphene has Dirac-like fermions and a high Fermi velocity similar to graphene even though it has nonequivalent bonds and possesses no hexagonal honeycomb structure. New features of the linear dispersions that are different from graphene are revealed. π and π* bands and the two comprising sublattices are the key factors for the emergence of Dirac-like fermions. T graphene and its two types of nanoribbon are expected to possess additional properties over graphene due to its different band structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.