The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.
Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron within 6 hours, and was accompanied by significant increases in osseous Fgf23 mRNA expression and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 mRNA and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wild-type and Col4a3KO mice with CKD, but markedly increased intact FGF23 levels only in the CKD mice. Inflammation increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in CKD.
Calcium-activated chloride channels (CaCCs) formed by TMEM16A or TMEM16B are broadly expressed in the nervous system, smooth muscles, exocrine glands, and other tissues. With two calcium-binding sites and a pore within each monomer, the dimeric CaCC exhibits voltage-dependent calcium sensitivity. Channel activity also depends on the identity of permeant anions. To understand how CaCC regulates neuronal signaling and how CaCC is, in turn, modulated by neuronal activity, we examined the molecular basis of CaCC gating. Here, we report that voltage modulation of TMEM16A-CaCC involves voltage-dependent occupancy of calcium- and anion-binding site(s) within the membrane electric field as well as a voltage-dependent conformational change intrinsic to the channel protein. These gating modalities all critically depend on the sixth transmembrane segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.