Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
BACKGROUND: Initial reports on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in children suggested that very young age and comorbidities may increase risk of severe evolution, but these findings remained to be confirmed. We aimed to analyze the clinical spectrum of hospitalized pediatric SARS-CoV-2 infection and predictors of severe disease evolution. METHODS: We conducted a French national prospective surveillance of children hospitalized with SARS-CoV-2 infection. We included all children with confirmed SARS-CoV-2 infection in 60 hospitals during February 15 to June 1, 2020. The main outcome was the proportion of children with severe disease, defined by hemodynamic or ventilatory (invasive or not) support requirement. RESULTS: We included 397 hospitalized children with SARS-CoV-2 infection. We identified several clinical patterns, ranging from paucisymptomatic children, admitted for surveillance, to lower respiratory tract infection or multisystem inflammatory syndrome in children. Children <90 days old accounted for 37% of cases (145 of 397), but only 4 (3%) had severe disease. Excluding children with multisystem inflammatory syndrome in children (n = 29) and hospitalized for a diagnosis not related to SARS-CoV-2 (n = 62), 23 of 306 (11%) children had severe disease, including 6 deaths. Factors independently associated with severity were age ≥10 years (odds ratio [OR] = 3.4, 95% confidence interval: 1.1–10.3), hypoxemia (OR = 8.9 [2.6–29.7]), C-reactive protein level ≥80 mg/L (OR = 6.6 [1.4–27.5]). CONCLUSIONS: In contrast with preliminary reports, young age was not an independent factor associated with severe SARS-CoV-2 infection, and children <90 days old were at the lowest risk of severe disease evolution. This may help physicians to better identify risk of severe disease progression in children.
Significance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.