S eventeen years after the severe acute respiratory syndrome (SARS) epidemic, an outbreak of pneumonia, now called coronavirus disease (COVID-19), was reported in Wuhan, China. Some of the early casepatients had a history of visiting the Huanan Seafood Wholesale Market, where wildlife mammals are sold, suggesting a zoonotic origin. The causative agent was rapidly isolated from patients and identified to be a coronavirus, now designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses (1). SARS-CoV-2 has spread rapidly to other places; 113,702 cases and 4,012 deaths had been reported in 110 countries/areas as of March 10, 2020 (2). In Hong Kong, 130 cases and 3 deaths had been reported. SARS-CoV-2 is a member of subgenus Sarbecovirus (previously lineage b) in the family Coronaviridae, genus Betacoronavirus, and is closely related to SARS-CoV, which caused the SARS epidemic during 2003, and to SARS-related-CoVs (SARSr-CoVs) in horseshoe bats discovered in Hong Kong and mainland China (3-5). Whereas SARS-CoV and Middle East respiratory syndrome coronavirus were rapidly traced to their immediate animal sources (civet and dromedaries, respectively), the origin of SARS-CoV-2 remains obscure. SARS-CoV-2 showed high genome sequence identities (87.6%-87.8%) to SARSr-Rp-BatCoV-ZXC21/ ZC45, detected in Rhinolophus pusillus bats from Zhoushan, China, during 2015 (6). A closer-related strain, SARSr-Ra-BatCoV-RaTG13 (96.1% genome identity with SARS-CoV-2), was recently reported in Rhinolophus affinis bats captured in Pu'er, China, during 2013 (7). Subsequently, Pangolin-SARSr-CoV/ P4L/Guangxi/2017 (85.3% genome identity to SARS-CoV-2) and related viruses were also detected in smuggled pangolins captured in Nanning, China, during 2017 (8) and Guangzhou, China, during 2019 (9). To elucidate the evolutionary origin and pathway of SARS-CoV-2, we performed an in-depth genomic, phylogenetic, and recombination analysis in relation to SARSr-CoVs from humans, civets, bats, and pangolins (10). The Study We downloaded 4 SARS-CoV-2, 16 human/civet-SARSr-CoV, 63 bat-SARSr-CoV and 2 pangolin-SARSr-CoV genomes from GenBank and GISAID (https:// www.gisaid.org). We also sequenced the complete genome of SARS-CoV-2 strain HK20 (GenBank accession no. MT186683) from a patient with COVID-19 in Hong Kong. We performed genome, phylogenetic, and recombination analysis as described (11). The 5 SARS-CoV-2 genomes had overall 99.8%-100% nt identities with each other. These genomes showed 96.1% genome identities with SARSr-Ra-BatCoV-RaTG13, 87.8% with SARSr-Rp-BatCoV-ZC45, 87.6% with SARSr-Rp-BatCoV-ZXC21, 85.3% with pangolin-SARSr-CoV/P4L/Guangxi/2017, and 73.8%-78.6% with other SARSr-CoVs, including human/civet-SARSr-CoVs (Table 1, https://wwwnc. cdc.gov/EID/article/26/7/20-0092-T1.htm). Most predicted proteins of SARS-CoV-2 showed high amino acid sequence identities with that of SARSr-Ra-BatCoV RaTG13, except the receptor-binding
Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named "nsp2N." Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β's papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.genetic recoding | translational control | nsp1beta
To control the COVID-19 pandemic and prevent its resurgence in areas preparing for a return of economic activities, a method for a rapid, simple, and inexpensive point-of-care diagnosis and mass screening is urgently needed. We developed and evaluated a one-step colorimetric reverse-transcriptional loop-mediated isothermal amplification assay (COVID-19-LAMP) for detection of SARS-CoV-2, using SARS-CoV-2 isolate and respiratory samples from patients with COVID-19 (n = 223) and other respiratory virus infections (n = 143). The assay involves simple equipment and techniques and low cost, without the need for expensive qPCR machines, and the result, indicated by color change, is easily interpreted by naked eyes. COVID-19-LAMP can detect SARS-CoV-2 RNA with detection limit of 42 copies/reaction. Of 223 respiratory samples positive for SARS-CoV-2 by qRT-PCR, 212 and 219 were positive by COVID-19-LAMP at 60 and 90 min (sensitivities of 95.07% and 98.21%) respectively, with the highest sensitivities among nasopharyngeal swabs (96.88% and 98.96%), compared to sputum/deep throat saliva samples (94.03% and 97.02%), and throat swab samples (93.33% and 98.33%). None of the 143 samples with other respiratory viruses were positive by COVID-19-LAMP, showing 100% specificity. Samples with higher viral load showed shorter detection time, some as early as 30 min. This inexpensive, highly sensitive and specific COVID-19-LAMP assay can be useful for rapid deployment as mobile diagnostic units to resource-limiting areas for point-of-care diagnosis, and for unlimited high-throughput mass screening at borders to reduce cross-regional transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.