Maternal physiological or supraphysiological hypercholesterolemia (MPH, MSPH) occurs during pregnancy. MSPH is associated with foetal endothelial dysfunction and atherosclerosis. However, the potential effects of MSPH on placental microvasculature are unknown. The aim of this study was to determine whether MSPH alters endothelial function in the placental microvasculature both ex vivo in venules and arterioles from the placental villi and in vitro in primary cultures of placental microvascular endothelial cells (hPMEC). Total cholesterol < 280 mg/dL indicated MPH, and total cholesterol ≥280 mg/dL indicated MSPH. The maximal relaxation to histamine, calcitonin gene-related peptide and adenosine was reduced in MSPH venule and arteriole rings. In hPMEC from MSPH placentas, nitric oxide synthase (NOS) activity and L-arginine transport were reduced without changes in arginase activity or the protein levels of endothelial NOS (eNOS), human cationic amino acid 1 (hCAT-1), hCAT-2A/B or arginase II compared with hPMEC from MPH placentas. In addition, it was shown that adenosine acts as a vasodilator of the placental microvasculature and that NOS is active in hPMEC. We conclude that MSPH alters placental microvascular endothelial function via a NOS/L-arginine imbalance. This work also reinforces the concept that placental endothelial cells from the macro- and microvasculature respond differentially to the same pathological condition.
Adenosine as well as agonists and antagonists for the four adenosine receptor subtypes (A1R, A2AR, A2BR and A3R) play a role in several key physiological and pathophysiological processes, including the regulation of vascular tone, thrombosis, immune response, inflammation, and angiogenesis. This review focuses on the adenosine-mediated regulation of lipid availability in the cell and in the systemic circulation as well in humans and animal models. Therefore, adenosine, mainly by acting on A1R, inhibits lipolysis activity, leading to reduction of the circulating fatty acid levels. This nucleoside can also participate in the early development of atherosclerosis by inhibiting the formation of foam cells via stimulation of cholesterol efflux through A2AR expressed on macrophages and reduction of the inflammatory process by activating A2AR and A2BR. Adenosine also appears to modulate intracellular cholesterol availability in Niemann-Pick type C1 disease and Alzheimer disease via A2AR and A3, respectively. Remarkably, the role of adenosine receptors in the regulation of plasma total cholesterol and triglyceride levels has been studied in animal models. Thus, an anti-atherogenic role for A2BR as well as a pro-atherogenic role of A2AR and A1 have been proposed; A3R has not been shown to participate in the control of lipid levels or the development of atherosclerosis. Surprisingly, and despite the role of A2A in the inhibition of foam cell formation among isolated cells, this receptor appears to be pro-atherogenic in mice. Remarkably, the role of adenosine receptors in human dyslipidaemia and atherosclerosis must to be elucidated. Additionally, it has been reported that increased lipid levels impair the effects of adenosine/adenosine receptors in controlling vascular tone, and we speculate on the possibility that this impairment could be due to alterations in the composition of the membrane microdomains where the adenosine receptors are located. Finally, a possible role for adenosine/adenosine receptors in the phenomena of dyslipidaemia in pregnancy has been proposed.
Maternal physiological (MpH) or supraphysiological hypercholesterolaemia (MSpH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (pHt) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MpH and MSpH neonates was similar. the abundance of LDL receptor (LDLR) and HDL receptor (SR-Bi) was comparable between MSpH and MpH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. in pHt from MSpH, the uptake of LDL and HDL was lower compared to MpH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MpH and MSpH cells. However, free cholesterol was increased in MSpH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking. During the progress of human pregnancy, the concentrations of total cholesterol (TC) and low-(LDL) rises in a physiological (maternal physiological hypercholesterolemia, MPH) 1,2 or supraphysiological (maternal supraphysiological hypercholesterolemia, MSPH) 3,4 way. MSPH is determined in women with TC levels above a cutoff value of 280-300 mg/dL at term of pregnancy or above the 75th percentile for the different trimesters of pregnancy 1-6. Endothelial dysfunction of the macro-and the microvascular vessels of the placenta 4,7-9 as well as development of atherosclerosis in the foetal aorta 1,2,6 has been described in pregnancies with MSPH and increased LDL levels. This information suggest that MSPH could be related to the development of cardiovascular disease in the offspring later in life 2,6,10,11. Despite the increased maternal TC and LDL concentrations, the levels of TC and triglycerides (Tg) of neonates from MSPH pregnancies are comparable to those from MPH pregnancies, suggesting a possible regulation of placental maternal-to-foetal cholesterol trafficking across the placenta 7,12 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.