Summary
The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by
Plasmodium
sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in
Plasmodium
invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the
Plasmodium
life cycle and promote MMV030084 as a promising
Plasmodium
PKG-targeting chemotype.
Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer's disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternative therapeutic target; however, drug discovery programmes focused on this G protein-coupled receptor (GPCR) have failed largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviours and hyper-locomotion. By mapping the upstream signalling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signalling in driving clinically relevant outcomes and in controlling adverse effects including "epileptic-like" seizures. We conclude that M1 mAChR ligands that promote receptor-phosphorylation dependent signalling would protect against cholinergic-adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behaviour relevant for the treatment of AD.
The realization of the therapeutic potential of targeting the M1
muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in
Alzheimer’s disease has prompted the discovery of M1 mAChR ligands
showing efficacy in alleviating cognitive dysfunction in both rodents and humans.
Among these is GSK1034702
(7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one),
described previously as a potent M1 receptor allosteric agonist, which
showed procognitive effects in rodents and improved immediate memory in a clinical
nicotine withdrawal test but induced significant side effects. Here we provide
evidence using ligand binding, chemical biology and functional assays to establish
that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic
manner at the M1 mAChR such that it can concomitantly span both the
orthosteric and an allosteric binding site. The bitopic nature of GSK1034702,
together with the intrinsic agonist activity and a lack of muscarinic receptor
subtype selectivity reported here, all likely contribute to the adverse effects of
this molecule in clinical trials. Although they impart beneficial effects on learning
and memory, we conclude that these properties are undesirable in a clinical candidate
due to the likelihood of adverse side effects. Rather, our data support the notion
that “pure” positive allosteric modulators showing selectivity for the
M1 mAChR with low levels of intrinsic activity would be preferable to
provide clinical efficacy with low adverse responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.