The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Pediatric glioblastomas (GBM) including diffuse intrinsic pontine gliomas (DIPG) are devastating brain tumors with no effective therapy. Here, we investigated clinical and biological impacts of histone H3.3 mutations. Forty-two DIPGs were tested for H3.3 mutations. Wild-type versus mutated (K27M-H3.3) subgroups were compared for HIST1H3B, IDH, ATRX and TP53 mutations, copy number alterations and clinical outcome. K27M-H3.3 occurred in 71 %, TP53 mutations in 77 % and ATRX mutations in 9 % of DIPGs. ATRX mutations were more frequent in older children (p < 0.0001). No G34V/R-H3.3, IDH1/2 or H3.1 mutations were identified. K27M-H3.3 DIPGs showed specific copy number changes, including all gains/amplifications of PDGFRA and MYC/PVT1 loci. Notably, all long-term survivors were H3.3 wild type and this group of patients had better overall survival. K27M-H3.3 mutation defines clinically and biologically distinct subgroups and is prevalent in DIPG, which will impact future therapeutic trial design. K27M- and G34V-H3.3 have location-based incidence (brainstem/cortex) and potentially play distinct roles in pediatric GBM pathogenesis. K27M-H3.3 is universally associated with short survival in DIPG, while patients wild-type for H3.3 show improved survival. Based on prognostic and therapeutic implications, our findings argue for H3.3-mutation testing at diagnosis, which should be rapidly integrated into the clinical decision-making algorithm, particularly in atypical DIPG.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-0998-0) contains supplementary material, which is available to authorized users.
Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and choosing therapies based on assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic make-up of this brain cancer with nearly 80% harboring a K27M-H3.3 or K27M-H3.1 mutation. However, DIPGs are still thought of as one disease with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs we integrated whole-genome-sequencing with methylation, expression and copy-number profiling, discovering that DIPGs are three molecularly distinct subgroups (H3-K27M, Silent, MYCN) and uncovering a novel recurrent activating mutation in the activin receptor ACVR1, in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer.
As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.
SUMMARY We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.