SummaryThe genetic architecture of autism spectrum disorder involves the interplay of common and rare variation and their impact on hundreds of genes. Using exome sequencing, analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, and a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic, transcriptional, and chromatin remodeling pathways. These include voltage-gated ion channels regulating propagation of action potentials, pacemaking, and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodelers, prominently histone post-translational modifications involving lysine methylation/demethylation.
Autism spectrum disorders (ASD) represent a formidable challenge for
psychiatry and neuroscience because of their high prevalence, life-long nature,
complexity and substantial heterogeneity. Facing these obstacles requires
large-scale multidisciplinary efforts. While the field of genetics has pioneered
data sharing for these reasons, neuroimaging had not kept pace. In response, we
introduce the Autism Brain Imaging Data Exchange (ABIDE) – a grassroots
consortium aggregating and openly sharing 1112 existing resting-state functional
magnetic resonance imaging (R-fMRI) datasets with corresponding structural MRI
and phenotypic information from 539 individuals with ASD and 573 age-matched
typical controls (TC; 7–64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we
present this resource and demonstrate its suitability for advancing knowledge of
ASD neurobiology based on analyses of 360 males with ASD and 403 male
age-matched TC. We focused on whole-brain intrinsic functional connectivity and
also survey a range of voxel-wise measures of intrinsic functional brain
architecture. Whole-brain analyses reconciled seemingly disparate themes of both
hypo and hyperconnectivity in the ASD literature; both were detected, though
hypoconnectivity dominated, particularly for cortico-cortical and
interhemispheric functional connectivity. Exploratory analyses using an array of
regional metrics of intrinsic brain function converged on common loci of
dysfunction in ASD (mid and posterior insula, posterior cingulate cortex), and
highlighted less commonly explored regions such as thalamus. The survey of the
ABIDE R-fMRI datasets provides unprecedented demonstrations of both replication
and novel discovery. By pooling multiple international datasets, ABIDE is
expected to accelerate the pace of discovery setting the stage for the next
generation of ASD studies.
Highlights d 102 genes implicated in risk for autism spectrum disorder (ASD genes, FDR % 0.1) d Most are expressed and enriched early in excitatory and inhibitory neuronal lineages d Most affect synapses or regulate other genes; how these roles dovetail is unknown d Some ASD genes alter early development broadly, others appear more specific to ASD
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17–29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn’s disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.