We have developed a novel method to deliver stem cells using 3D bioprinted cardiac patches, free of biomaterials. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), fibroblasts (FB) and endothelial cells (EC) were aggregated to create mixed cell spheroids. Cardiac patches were created from spheroids (CM:FB:EC = 70:15:15, 70:0:30, 45:40:15) using a 3D bioprinter. Cardiac patches were analyzed with light and video microscopy, immunohistochemistry, immunofluorescence, cell viability assays and optical electrical mapping. Cardiac tissue patches of all cell ratios beat spontaneously after 3D bioprinting. Patches exhibited ventricular-like action potential waveforms and uniform electrical conduction throughout the patch. Conduction velocities were higher and action potential durations were significantly longer in patches containing a lower percentage of FBs. Immunohistochemistry revealed staining for CM, FB and EC markers, with rudimentary CD31+ blood vessel formation. Immunofluorescence revealed the presence of Cx43, the main cardiac gap junction protein, localized to cell-cell borders. In vivo implantation suggests vascularization of 3D bioprinted cardiac patches with engraftment into native rat myocardium. This constitutes a significant step towards a new generation of stem cell-based treatment for heart failure.
Background and Purpose
The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass.
Methods
A prospective, observational pilot study was conducted in children (n=54) undergoing cardiac surgery with cardiopulmonary bypass for correction of congenital heart defects. Cerebral oximetry index (COx) was calculated as a moving, linear correlation coefficient between slow waves of arterial blood pressure and cerebral oximetry measured with near-infrared spectroscopy. An autoregulation curve was constructed for each patient with averaged COx values sorted by arterial blood pressure.
Results
Hypotension was associated with increased values of COx (P<0.0001). For 77% of patients, an individual estimate of lower limits of pressure autoregulation could be determined using a threshold COx value of 0.4. The mean lower limits of pressure autoregulation for the cohort using this method was 42±7 mm Hg.
Conclusions
This pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated.
Patients with SS have a high overall survival. Survival probability was lower in patients with associated CHDs and in patients with pulmonary hypertension. Surgical treatment of SS is beneficial in reducing symptoms, however, given the significant risk of post-operative scimitar drainage stenosis/occlusion, it should be tailored to a comprehensive haemodynamic evaluation and to the patient's age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.