BF(2)-Azadipyrromethene dyes are a promising class of NIR emitter (nonhalogenated) and photosensitizer (halogenated). Spectroscopic studies on a benchmark example of each type, including absorption (one and two photon), time-resolved transient absorption (ps-ms) and fluorescence, are reported. Fast photodynamics reveal that intense nanosecond NIR fluorescence is quenched in a brominated analog, giving rise to a persistent (21 μs) transient absorption signature. Kinetics for these changes are determined and ascribed to the efficient population of a triplet state (72%), which can efficiently sensitize singlet oxygen formation (ca. 74%), directly observed by (1)Δ(g) luminescence. Photostability measurements reveal extremely high stability, notably for the nonhalogenated variant, which is at least 10(3)-times more stable (Φ(photodeg.) = < 10(-8)) than some representative BODIPY and fluorescein dyes.
2-Phenyl-benzoxazole and five derivatives bearing an alkyl or alkoxy substituent on the phenyl ring were used to prepare aqueous suspensions of particles via a solvent-exchange method. In these conditions, the methyl and methoxy derivatives spontaneously gave nanofibers, while the other compounds led to microcrystals. This shows that minor chemical changes are enough to direct the formation of a given type of particle. From a spectroscopic viewpoint, all compounds strongly emit blue light in the solid state, with spectra much broader than those registered in n-heptane and ethanol solutions. The photoluminescence quantum yields reached 38% and were slightly affected in aqueous suspension by the polarity of the environment. The molecular arrangement, deduced from X-ray analysis for the methyl and methoxy derivatives, was used to explain the fluorescence properties in the solid state. This work shows that 2-phenyl-benzoxazole derivatives are interesting candidates for applications as fluorescent nanomaterials, including in aqueous and biological media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.