Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.
Background Cassava is an important food crop in tropical and sub-tropical regions worldwide. In Africa, cassava production is widely affected by cassava mosaic disease (CMD), which is caused by the African cassava mosaic geminivirus that is transmitted by whiteflies. Cassava breeders often use a single locus, CMD2, for introducing CMD resistance into susceptible cultivars. The CMD2 locus has been genetically mapped to a 10-Mbp region, but its organization and genes as well as their functions are unknown. Results We report haplotype-resolved de novo assemblies and annotations of the genomes for the African cassava cultivar TME (tropical Manihot esculenta), which is the origin of CMD2, and the CMD-susceptible cultivar 60444. The assemblies provide phased haplotype information for over 80% of the genomes. Haplotype comparison identified novel features previously hidden in collapsed and fragmented cassava genomes, including thousands of allelic variants, inter-haplotype diversity in coding regions, and patterns of diversification through allele-specific expression. Reconstruction of the CMD2 locus revealed a highly complex region with nearly identical gene sets but limited microsynteny between the two cultivars. Conclusions The genome maps of the CMD2 locus in both 60444 and TME3, together with the newly annotated genes, will help the identification of the causal genetic basis of CMD2 resistance to geminiviruses. Our de novo cassava genome assemblies will also facilitate genetic mapping approaches to narrow the large CMD2 region to a few candidate genes for better informed strategies to develop robust geminivirus resistance in susceptible cassava cultivars.
BackgroundSexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids.ResultsWe have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors.ConclusionOur comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation.
Binding protein generation relies on laborious screening cascades that process candidate molecules individually. To break with this paradigm, we developed NestLink, a binder selection and identification technology able to biophysically characterize thousands of library members at once without handling individual clones at any stage of the process. NestLink centers on genetically encoded barcoding peptides, termed flycodes, which were designed for maximal detectability by mass spectrometry and support accurate deep sequencing. We demonstrate that NestLink has the capacity to overcome fundamental limitations of binder generation. Rare binders against an integral membrane protein were identified directly in the cellular environment of a human pathogen. Hundreds of binder candidates were simultaneously ranked according to kinetic parameters. Deep-mining of a nanobody immune repertoire for membrane protein binders was performed entirely in solution without target immobilization. NestLink opens avenues for the selection of tailored binder characteristics directly in tissues or in living organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.