Highlights d RNA granules ''hitchhike'' on motile lysosomes during longdistance transport d ANXA11 binds to RNA and lysosomes via phase separating and membrane binding domains d ANXA11 tethers RNA granules to lysosomes and is required for axonal RNA transport d ALS-associated ANXA11 mutations impair its tethering function and RNA transport
Hydrogen-deuterium exchange combined with mass spectrometry (HDX-MS) is a widely applied biophysical technique that probes the structure and dynamics of biomolecules without the need for site-directed modifications or bio-orthogonal labels. The mechanistic interpretation of HDX data, however, is often qualitative and subjective, owing to a lack of quantitative methods to rigorously translate observed deuteration levels into atomistic structural information. To help address this problem, we have developed a methodology to generate structural ensembles that faithfully reproduce HDX-MS measurements. In this approach, an ensemble of protein conformations is first generated, typically using molecular dynamics simulations. A maximum-entropy bias is then applied post hoc to the resulting ensemble such that averaged peptide-deuteration levels, as predicted by an empirical model, agree with target values within a given level of uncertainty. We evaluate this approach, referred to as HDX ensemble reweighting (HDXer), for artificial target data reflecting the two major conformational states of a binding protein. We demonstrate that the information provided by HDX-MS experiments and by the model of exchange are sufficient to recover correctly weighted structural ensembles from simulations, even when the relevant conformations are rarely observed. Degrading the information content of the target data—e.g., by reducing sequence coverage, by averaging exchange levels over longer peptide segments, or by incorporating different sources of uncertainty—reduces the structural accuracy of the reweighted ensemble but still allows for useful insights into the distinctive structural features reflected by the target data. Finally, we describe a quantitative metric to rank candidate structural ensembles according to their correspondence with target data and illustrate the use of HDXer to describe changes in the conformational ensemble of the membrane protein LeuT. In summary, HDXer is designed to facilitate objective structural interpretations of HDX-MS data and to inform experimental approaches and further developments of theoretical exchange models.
The coupled transport of ions and substrates allows transporters to accumulate substrates using the energy of transmembrane ion gradients and electrical potentials. During transport, conformational changes that switch accessibility of substrate and ion binding sites from one side of the membrane to the other must be controlled so as to prevent uncoupled movement of ions or substrates. In the Neurotransmitter:Sodium Symporter (NSS) family, Na + stabilizes the transporter in an outward-open state, thus decreasing the likelihood of uncoupled Na + transport. Substrate binding, in a step essential for coupled transport, must overcome the effect of Na + , allowing intracellular substrate and Na + release from an inward-open state. However, the specific elements of the protein that mediate this conformational response to substrate binding are unknown. Previously, we showed that in the prokaryotic NSS transporter LeuT, the effect of Na + on conformation requires the Na2 site, where it influences conformation by fostering interaction between two domains of the protein (JBC 291: 1456(JBC 291: , 2016. Here, we used cysteine accessibility to measure conformational changes of LeuT in E. coli membranes. We identified a conserved tyrosine residue in the substrate binding site required for substrate to convert LeuT to inward-open states by establishing an interaction between the two transporter domains. We further identify additional required interactions between the two transporter domains in the extracellular pathway. Together with our previous work on the conformational effect of Na + , these results identify mechanistic components underlying ion-substrate coupling in NSS transporters. Significance StatementMembrane transport proteins are responsible for moving substrates such as nutrients, vitamins, drugs and signaling molecules across cellular membranes. A subset of these proteins, the ion-coupled transporters, use a transmembrane ion gradient to drive energetically unfavorable substrate movement from a lower concentration on one side of the membrane to a higher concentration on the other side. They do this by coupling the movement of substrate and ions in the same or the opposite direction. Coupled transport requires conformational changes that occur exclusively or predominantly when specific conditions of ion and substrate binding are met. This work identifies, for a family of Na + -coupled neurotransmitter transporters, how the rules controlling these conformational changes are encoded in the transporter structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.