1 O 2 (singlet oxygen) is a reactive O 2 species produced from triplet excited chlorophylls in the chloroplasts, especially when plants are exposed to excess light energy. Similarly to other active O 2 species, 1 O 2 has a dual effect: It is toxic, causing oxidation of biomolecules, and it can act as a signal molecule that leads to cell death or to acclimation. Carotenoids are considered to be the main 1 O 2 quenchers in chloroplasts, and we show here that light stress induces the oxidation of the carotenoid β-carotene in Arabidopsis plants, leading to the accumulation of different volatile derivatives. One such compound, β-cyclocitral, was found to induce changes in the expression of a large set of genes that have been identified as 1 O 2 responsive genes. In contrast, β-cyclocitral had little effect on the expression of H 2 O 2 gene markers. β-Cyclocitral–induced reprogramming of gene expression was associated with an increased tolerance to photooxidative stress. The results indicate that β-cyclocitral is a stress signal produced in high light that is able to induce defense mechanisms and represents a likely messenger involved in the 1 O 2 signaling pathway in plants.
Histone lysines can be mono-, di-, or trimethylated, providing an ample magnitude of epigenetic information for transcription regulation. In fungi, SET2 is the sole methyltransferase responsible for mono-, di-, and trimethylation of H3K36. Here we show that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases. The SET2 homologs SDG8 and SDG26 each can methylate oligonucleosomes in vitro, and both proteins are localized in the nucleus. While the previously reported loss-offunction sdg8 mutants have an early-flowering phenotype, the loss-of-function sdg26 mutants show a lateflowering phenotype. Consistently, several MADS-box flowering repressors are down-regulated by sdg8 but up-regulated by sdg26. The sdg8 but not the sdg26 mutant plants show a dramatically reduced level of both diand trimethyl-H3K36 and an increased level of monomethyl-H3K36. SDG8 is thus specifically required for diand trimethylation of H3K36. Our results further establish that H3K36 di-and tri-but not monomethylation correlates with transcription activation. Finally, we show that SDG8 and VIP4, which encodes a component of the PAF1 complex, act independently and synergistically in transcription regulation. Together our results reveal that the deposition of H3K36 methylation is finely regulated, possibly to cope with the complex regulation of growth and development in higher eukaryotes.During the past few years, histone lysine (K) methylation has been viewed to play widespread roles in transcriptional regulation, DNA repair, and epigenetic inheritance (15, 32). It occurs on histone H3K4, H3K9, H3K27, H3K36, and H4K20 in several studied eukaryotes. In general, H3K4 and H3K36 methylation is associated with actively transcribed genes, whereas H3K9, H3K27, and H4K20 methylation is associated with transcriptional repression and silenced chromatin regions. Furthermore, K residues can be mono-, di-or trimethylated, and the degree of methylation on H3K4, H3K9, H3K27, and H4K20 has considerable influence on transcriptional activation or repression (15,43,55,63). In comparison, methylation on H3K36 is less extensively characterized. In fungi, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Neurospora crassa, a sole histone-lysine-methyltransferase (HKMT), SET2, is responsible for mono-, di-, and trimethylation of H3K36 (1, 35, 49). In mammals, both the Sotos syndrome and leukemia-associated protein NSD1 and the Huntington disease protein HYPB can methylate H3K36 in vitro (42,50). In Arabidopsis thaliana, the loss-of-function sdg8 (also named efs) mutants show a dramatically reduced level of H3K36 dimethylation and an early-flowering phenotype (25,65). Because of these phenotype-associated crucial functions, unraveling the mechanism of deposition of H3K36 methylation in mammals and in plants is of particular importance.Proper timing of flowering is pivotal for the reproductive success of plants and thus is controlled by complex genetic networks, which involve histone modifications and chroma...
BackgroundAlthough it is a crucial cellular process required for both normal development and to face stress conditions, the control of programmed cell death in plants is not fully understood. We previously reported the isolation of ATXR5 and ATXR6, two PCNA-binding proteins that could be involved in the regulation of cell cycle or cell death. A yeast two-hybrid screen using ATXR5 as bait captured AtIPS1, an enzyme which catalyses the committed step of myo-inositol (MI) biosynthesis. atips1 mutants form spontaneous lesions on leaves, raising the possibility that MI metabolism may play a role in the control of PCD in plants. In this work, we have characterised atips1 mutants to gain insight regarding the role of MI in PCD regulation.Methodology/Principal Findings- lesion formation in atips1 mutants depends of light intensity, is due to PCD as evidenced by TUNEL labelling of nuclei, and is regulated by phytohormones such as salicylic acid - MI and galactinol are the only metabolites whose accumulation is significantly reduced in the mutant, and supplementation of the mutant with these compounds is sufficient to prevent PCD - the transcriptome profile of the mutant is extremely similar to that of lesion mimic mutants such as cpr5, or wild-type plants infected with pathogens.Conclusion/SignificanceTaken together, our results provide strong evidence for the role of MI or MI derivatives in the regulation of PCD. Interestingly, there are three isoforms of IPS in Arabidopsis, but AtIPS1 is the only one harbouring a nuclear localisation sequence, suggesting that nuclear pools of MI may play a specific role in PCD regulation and opening new research prospects regarding the role of MI in the prevention of tumorigenesis. Nevertheless, the significance of the interaction between AtIPS1 and ATXR5 remains to be established.
SummaryLignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoylCoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C 6 C 1 lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C 6 C 1 monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis.
In the exalbuminous species Arabidopsis thaliana, seed maturation is accompanied by the deposition of oil and storage proteins and the reduction of the endosperm to one cell layer. Here, we consider reserve partitioning between embryo and endosperm compartments. The pattern of deposition, final amount, and composition of these reserves differ between the two compartments, with the embryo representing the principal storage tissue in mature seeds. Complex regulatory mechanisms are known to prevent activation of maturation-related programs during embryo morphogenesis and, later, during vegetative growth. Here, we describe a regulator that represses the expression of maturation-related genes during maturation within the endosperm. MYB118 is transcriptionally induced in the maturing endosperm, and seeds of myb118 mutants exhibit an endosperm-specific derepression of maturation-related genes associated with a partial relocation of storage compounds from the embryo to the endosperm. Moreover, MYB118 activates endosperm-induced genes through the recognition of TAACGG elements. These results demonstrate that the differential partitioning of reserves between the embryo and endosperm in exalbuminous Arabidopsis seeds does not only result from developmental programs that establish the embryo as the preponderant tissue within seeds. This differential partitioning is also regulated by MYB118, which regulates the biosynthesis of reserves at the spatial level during maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.