Chronic myeloid leukemia (CML) patients in sustained “deep molecular response” may stop TKI treatment without disease recurrence; however, half of them lose molecular response shortly after TKI withdrawing. Well-defined eligibility criteria to predict a safe discontinuation up-front are still missing. Relapse is probably due to residual quiescent TKI-resistant leukemic stem cells (LSCs) supposedly transcriptionally low/silent and not easily detectable by BCR-ABL1 qRT-PCR. Bone marrow Ph+ CML CD34+/CD38− LSCs were found to specifically co-express CD26 (dipeptidylpeptidase-IV). We explored feasibility of detecting and quantifying CD26+ LSCs by flow cytometry in peripheral blood (PB). Over 400 CML patients (at diagnosis and during/after therapy) entered this cross-sectional study in which CD26 expression was evaluated by a standardized multiparametric flow cytometry analysis on PB CD45+/CD34+/CD38− stem cell population. All 120 CP-CML patients at diagnosis showed measurable PB CD26+ LSCs (median 19.20/μL, range 0.27–698.6). PB CD26+ LSCs were also detectable in 169/236 (71.6%) CP-CML patients in first-line TKI treatment (median 0.014 cells/μL; range 0.0012–0.66) and in 74/112 (66%), additional patients studied on treatment-free remission (TFR) (median 0.015/μL; range 0.006–0.76). Notably, no correlation between BCR-ABL/ABLIS ratio and number of residual LSCs was found both in patients on or off TKIs. This is the first evidence that “circulating” CML LSCs persist in the majority of CML patients in molecular response while on TKI treatment and even after TKI discontinuation. Prospective studies evaluating the dynamics of PB CD26+ LSCs during TKI treatment and the role of a “stem cell response” threshold to achieve and maintain TFR are ongoing.
Health-related quality of life (HRQOL) is an important goal of therapy for chronic myeloid leukemia (CML) patients treated with current molecular-targeted therapies. The main objective of this study was to investigate factors associated with long-term HRQOL outcomes of CML patients receiving imatinib. Analysis was performed on 422 CML patients recruited in an observational multicenter study. HRQOL was assessed with the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36). Key socio-demographic and clinical data were investigated for their association with HRQOL outcomes. Chronic fatigue and social support were also investigated. Univariate and multivariate linear regression analyses were used to identify independent factors associated with HRQOL outcomes. Fatigue was the only variable showing an independent and consistent association across all physical and mental HRQOL outcomes (P<0.01). Differences between patients reporting low versus high fatigue levels were more than eight and seven times the magnitude of a clinically meaningful difference, respectively, for the role physical (Δ=70 points) and emotional scale (Δ=63 points) of the SF-36. Fatigue did not occur as an isolated symptom and was most highly correlated with musculoskeletal pain (r=0.511; P≤0.001) and muscular cramps (r=0.448; P≤0.001). Chronic fatigue is the major factor limiting HRQOL of CML patients receiving imatinib.
BCR-ABL1 kinase domain (KD) mutation status is considered to be an important element of clinical decision algorithms for chronic myeloid leukemia (CML) patients who do not achieve an optimal response to tyrosine kinase inhibitors (TKIs). Conventional Sanger sequencing is the method currently recommended to test BCR-ABL1 KD mutations. However, Sanger sequencing has limited sensitivity and cannot always discriminate between polyclonal and compound mutations. The use of next-generation sequencing (NGS) is increasingly widespread in diagnostic laboratories and represents an attractive alternative. Currently available data on the clinical impact of NGS-based mutational testing in CML patients do not allow recommendations with a high grade of evidence to be prepared. This article reports the results of a group discussion among an ad hoc expert panel with the objective of producing recommendations on the appropriateness of clinical decisions about the indication for NGS, the performance characteristics of NGS platforms, and the therapeutic changes that could be applied based on the use of NGS in CML. Overall, these recommendations might be employed to inform clinicians about the practical use of NGS in CML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.