Obesity is a major risk factor for essential hypertension, diabetes, and other comorbid conditions that contribute to development of chronic kidney disease. Obesity raises blood pressure by increasing renal tubular sodium reabsorption, impairing pressure natriuresis, and causing volume expansion via activation of the sympathetic nervous system and renin–angiotensin–aldosterone system and by physical compression of the kidneys, especially when there is increased visceral adiposity. Other factors such as inflammation, oxidative stress, and lipotoxicity may also contribute to obesity-mediated hypertension and renal dysfunction. Initially, obesity causes renal vasodilation and glomerular hyperfiltration, which act as compensatory mechanisms to maintain sodium balance despite increased tubular reabsorption. However, these compensations, along with increased arterial pressure and metabolic abnormalities, may ultimately lead to glomerular injury and initiate a slowly developing vicious cycle that exacerbates hypertension and worsens renal injury. Body weight reduction, via caloric restriction and increased physical activity, is an important first step for management of obesity, hypertension, and chronic kidney disease. However, this strategy may not be effective in producing long-term weight loss or in preventing cardiorenal and metabolic consequences in many obese patients. The majority of obese patients require medical therapy for obesity-associated hypertension, metabolic disorders, and renal disease, and morbidly obese patients may require surgical interventions to produce sustained weight loss.
AKI is a global concern with a high incidence among patients across acute care settings. AKI is associated with significant clinical consequences and increased health care costs. Preventive measures, as well as rapid identification of AKI, have been shown to improve outcomes in small studies. Providing high-quality care for patients with AKI or those at risk of AKI occurs across a continuum that starts at the community level and continues in the emergency department, hospital setting, and after discharge from inpatient care. Improving the quality of care provided to these patients, plausibly mitigating the cost of care and improving short- and long-term outcomes, are goals that have not been universally achieved. Therefore, understanding how the management of AKI may be amenable to quality improvement programs is needed. Recognizing this gap in knowledge, the 22nd Acute Disease Quality Initiative meeting was convened to discuss the evidence, provide recommendations, and highlight future directions for AKI-related quality measures and care processes. Using a modified Delphi process, an international group of experts including physicians, a nurse practitioner, and pharmacists provided a framework for current and future quality improvement projects in the area of AKI. Where possible, best practices in the prevention, identification, and care of the patient with AKI were identified and highlighted. This article provides a summary of the key messages and recommendations of the group, with an aim to equip and encourage health care providers to establish quality care delivery for patients with AKI and to measure key quality indicators.
Chronically infusing a subpressor dose of angiotensin (Ang) II increases blood pressure via poorly defined mechanisms. We found that this hypertensive response is accompanied by increased oxidant stress and is prevented by blocking endothelin (ET) receptors. Thus, we now tested whether blocking oxidant stress decreases both blood pressure and ET levels. We infused Sprague-Dawley rats (via osmotic pumps) with either vehicle (group 1) or Ang II (5 ng. kg(-1). min(-1); groups 2 to 4) for 15 days. Groups 3 and 4 also received either tempol in the drinking water (1 mmol/L) or vitamin E (5000 IU/kg diet), respectively, for 15 days. We measured systolic blood pressure (SBP) and urinary nitrite excretion every 3 days, and on day 15 we measured systemic and renal venous plasma levels of ET, isoprostanes, and thiobarbituric acid reactive substances (TBARS). SBP in Group 1 did not change throughout the study, whereas Ang II increased SBP (from 132+/-5 to 151+/-7 mm Hg). In addition, Ang II increased the systemic and renal venous levels of isoprostanes, TBARS, and ET and caused a transient decrease in urinary nitrites (that returned to control levels by day 9). Both tempol and vitamin E prevented Ang II-induced hypertension and either prevented or tended to blunt the increase in systemic and renal isoprostanes, TBARS, and ET. Finally, both antioxidants abolished the transient decrease in urinary nitrites. These results together with our previous study suggest that subpressor-dose Ang II increases oxidant stress (and isoprostanes). This in turn increases ET levels, which participate in the hypertensive response to Ang II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.