The coinfection of Avibacterium paragallinarum and Ornithobacterium rhinotracheale in two outbreaks of infectious coryza from Peru is reported. The diagnosis was confirmed by bacteriologic isolation, PCR testing, and sequencing of the 16S rRNA gene. The susceptibility of the isolates to 12 antimicrobial agents was tested by a disk diffusion method. The isolates were susceptible to amoxicillin/clavulanic acid and florfenicol and were resistant to oxacillin and sulfamethoxazole/trimethoprim. The coinfection of Av. paragallinarum and O. rhinotracheale and the severity of clinical signs were evaluated by experimental infection of specific-pathogen-free chickens. The group inoculated with O. rhinotracheale alone presented minimal clinical signs in 3 of 10 chickens. However, the groups inoculated with both Av. paragallinarum and O. rhinotracheale induced the most-severe clinical signs compared with the group inoculated with Av. paragallinarum alone. In conclusion, coinfections with Av. paragallinarum and O. rhinotracheale may occur, and these outbreaks could be more severe than single infections. Hence, the prevention, control, and diagnosis of Av. paragallinarum with O. rhinotracheale are important in outbreaks of infectious coryza.
In the present study, the ability of a recently proposed multiplex polymerase chain reaction (mPCR) to determine the serogroups (A, B, and C) of Avibacterium paragallinarum was evaluated. A total of 12 reference strains and 69 field isolates of Av. paragallinarum from Ecuador, Mexico, Panama, and Peru were included in the study. With some exceptions (which were serotyped in the current study), all of the isolates and strains had been previously examined by 2 serotyping schemes (Page and Kume) or were the formal reference strains for the schemes. Three of 6 (50%) reference strains of serogroup A, 2 (100%) of serogroup B, and 1 of 4 (25%) reference strains of serogroup C were correctly serotyped by the mPCR. With the field isolates, the mPCR correctly recognized 16 of the 17 serogroup A isolates, 10 of the 12 serogroup B isolates, and 18 of the 37 serogroup C isolates. Overall, the specificity and sensitivity of the PCR test was as follows: 82.6% and 87.3% (serogroup A), 85.7% and 71.9% (serogroup B), and 46.3% and 100% (serogroup C). The poor performance of the mPCR in terms of recognition of serogroup C isolates (low sensitivity of 46.3%) and the relatively high level of uncertainty about the accuracy of the serogroup A and B results (specificity of 87.3% and 71.9%, respectively) means that the assay cannot be recommended as a replacement for conventional serotyping.
Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each genome. We sequenced twelve Cobb chicken MHC alleles from animals of different farms in the central coast of Peru, and subsequently determined three optimal human MHC-I and four optimal human MHC-II substitute alleles for MHC-peptide prediction. The potential MHC restricted short peptide epitope-like candidates were predicted using human specific (with determined suitable chicken substitutes) NetMHC MHC-peptide prediction model with web server features from all the FAdV genomes available. FAdV specific peptides with calculated binding values to known substituted chicken MHC-I and MHC-II were further filtered for diagnostics and potential vaccine epitopes. Promiscuity to the 3/4 optimal human MHC-I/II alleles and conservation among the available FAdV genomes was considered in this analysis. The localization on the surface of the protein was considered for class II predicted peptides. Thus, a set of class I and class II specific peptides from FAdV were reported in this study. Hence, a multiepitopic protein was built with these peptides, and subsequently tested to confirm the production of specific antibodies in chicken.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.