Maternal thyroid hormones are essential for proper fetal development. A deficit of these hormones during gestation has enduring consequences in the central nervous system of the offspring, including detrimental learning and impaired memory. Few studies have shown that thyroid hormone deficiency has a transient effect in the number of T and B cells in the offspring gestated under hypothyroidism; however, there are no studies showing whether maternal hypothyroidism during gestation impacts the response of the offspring to infections. In this study, we have evaluated whether adult mice gestated in hypothyroid mothers have an altered response to pneumococcal pneumonia. We observed that female mice gestated in hypothyroidism have increased survival rate and less bacterial dissemination to blood and brain after an intranasal challenge with Streptococcus pneumoniae. Further, these mice had higher amounts of inflammatory cells in the lungs and reduced production of cytokines characteristic of sepsis in spleen, blood, and brain at 48 hours after infection. Interestingly, mice gestated in hypothyroid mothers had basally increased vascular permeability in the lungs. These observations suggest that gestational hypothyroidism alters the immune response and the physiology of lungs in the offspring, increasing the resistance to respiratory bacterial infections.
The effect of a magnetic foil placed in the PPT/Rx Firm Molded Insole on the relief of heel pain was determined using the foot function index. Nineteen patients wore the PPT/Rx Firm Molded Insoles with the magnetic foil for 4 weeks and 15 patients wore the same PPT/Rx Firm Molded Insole with no magnetic foil for the same time. Approximately 60% of patients in both groups reported improvement. There was also no significant difference in the improvement between the magnetic foil group and the PPT/Rx Firm Molded Insole group in their scores on the post-treatment foot function index. These results suggest that the PPT/Rx Firm Molded Insole alone was effective in treating heel pain after only 4 weeks. The magnetic foil offered no advantage over the plain insole.
Hypothyroxinemia (Hpx) is a highly frequent condition characterized by low thyroxine (T) and normal 3,3',5'-triiodothyronine (T) and thyroid stimulating hormone (TSH) levels in the blood. Gestational Hpx is closely related to cognitive impairment in the human offspring. In animal models gestational Hpx causes impairment at glutamatergic synapsis, spatial learning, and the susceptibility to suffer strong autoimmune diseases like experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying these phenotypes are unknown. On the other hand, it has been shown that astrocytes and microglia affect the outcome of EAE. In fact, the activation of astrocytes and microglia in the central nervous system (CNS) contributes to EAE progression. Thus, in this work, the reactivity of astrocytes and microglia from rats gestated in Hpx was evaluated aiming to understand whether these cells are targets of gestational Hpx. Interestingly, microglia derived from the offspring gestated in Hpx were less reactive compared to microglia derived from offspring gestated in euthyroidism. Instead, astrocytes derived from the offspring gestated in Hpx were significantly more reactive than the astrocytes from the offspring gestated in euthyroidism. This work contributes with novel information regarding the effects of gestational Hpx over astrocytes and microglia in the offspring. It suggests that astrocyte could react strongly to an inflammatory insult inducing neuronal death in the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.