Background—The clinical profile and arrhythmic outcome of competitive athletes with isolated nonischemic left ventricular (LV) scar as evidenced by contrast-enhanced cardiac magnetic resonance remain to be elucidated.Methods and Results—We compared 35 athletes (80% men, age: 14–48 years) with ventricular arrhythmias and isolated LV subepicardial/midmyocardial late gadolinium enhancement (LGE) on contrast-enhanced cardiac magnetic resonance (group A) with 38 athletes with ventricular arrhythmias and no LGE (group B) and 40 healthy control athletes (group C). A stria LGE pattern with subepicardial/midmyocardial distribution, mostly involving the lateral LV wall, was found in 27 (77%) of group A versus 0 controls (group C; P<0.001), whereas a spotty pattern of LGE localized at the junction of the right ventricle to the septum was respectively observed in 11 (31%) versus 10 (25%; P=0.52). All athletes with stria pattern showed ventricular arrhythmias with a predominant right bundle branch block morphology, 13 of 27 (48%) showed ECG repolarization abnormalities, and 5 of 27 (19%) showed echocardiographic hypokinesis of the lateral LV wall. The majority of athletes with no or spotty LGE pattern had ventricular arrhythmias with a predominant left bundle branch block morphology and no ECG or echocardiographic abnormalities. During a follow-up of 38±25 months, 6 of 27 (22%) athletes with stria pattern experienced malignant arrhythmic events such as appropriate implantable cardiac defibrillator shock (n=4), sustained ventricular tachycardia (n=1), or sudden death (n=1), compared with none of athletes with no or LGE spotty pattern and controls.Conclusions—Isolated nonischemic LV LGE with a stria pattern may be associated with life-threatening arrhythmias and sudden death in the athlete. Because of its subepicardial/midmyocardial location, LV scar is often not detected by echocardiography.
Sweat rate and sweat composition vary extensively between individuals, and quantification of these losses has a role to play in the individualisation of a hydration strategy to optimise training and competitive performance. Data were collected from 26 male professional football (soccer) players during one 90 min pre-season training session. This was the 2nd training session of the day, carried out between 19.30 and 21.00 h when the mean +/- SD environment was 32 +/- 3 degrees C, 20 +/- 5 %rh and WBGT 22 +/- 2 degrees C. Training consisted of interval running and 6-a-side games during which the average heart rate was 136 +/- 7 bpm with a maximum rate of 178 +/- 7 bpm (n = 19). Before and after training all players were weighed nude. During training all players had free access to sports drinks (Gatorade) and mineral water (Solan de Cabras). All drink bottles were weighed before and after training. Players were instructed to drink only from their own bottles and not to spit out any drink. No player urinated during the training session. Sweat was collected by patches from the chest, arm, back, and thigh of a subgroup of 7 players. These remained in place for the first 15 - 30 min of the training session, and sweat was analysed for sodium (Na (+)) and potassium (K (+)) concentration. Body mass loss was 1.23 +/- 0.50 kg (ranging from 0.50 to 2.55 kg), equivalent to dehydration of 1.59 +/- 0.61 % of pre-training body mass. The sweat volume lost was 2193 +/- 365 ml (1672 to 3138 ml), but only 972 +/- 335 ml (239 to 1724 ml) of fluid was consumed. 45 +/- 16 % of the sweat volume loss was replaced, but this ranged from 9 % to 73 %. The Na (+) concentration of the subgroup's sweat was 30.2 +/- 18.8 mmol/l (15.5 to 66.3 mmol/l) and Na (+) losses averaged 67 +/- 37 mmol (26 to 129 mmol). The K (+) concentration of the sweat was 3.58 +/- 0.56 mmol/l (2.96 to 4.50 mmol/l) and K (+) losses averaged 8 +/- 2 mmol (5 to 12 mmol). The drinking employed by these players meant that only 23 +/- 21 % of the sweat Na (+) losses were replaced: This ranged from replacing virtually none (when water was the only drink) to replacing 62 % when the sports drink was consumed. These elite soccer players did not drink sufficient volume to replace their sweat loss. This, however, is in accord with data in the literature from other levels of soccer players and athletes in other events. These measurements allow for an individualisation of the club's hydration strategy.
Regular exercise has multiple benefits for physical and mental health, including the body’s ability to combat infections. The current COVID-19 pandemic and the social distancing measures employed to curtail the impact of the infection are likely to reduce the amount of usual physical activity being performed by most individuals, including habitual exercisers. The uncertainties relating to the impact of the SARS-CoV-2 virus on the heart may cause increased anxiety, particularly in athletes who need to sustain a vigorous exercise regime in order to maintain their skills and fitness in preparation for return to competition after a short re-training period. The aim of this document is to provide practical answers to pertinent questions being posed by the sporting community, in an attempt to offer reassurance, promote safe participation in exercise during as well as after the COVID-19 pandemic and provide a framework of management for physicians caring for athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.