Multiple myeloma (MM) is characterized by severely imbalanced bone remodeling. In this study, we investigated the potential effect of proteasome inhibitors (PIs), a class of drugs known to stimulate bone formation, on the mechanisms involved in osteocyte death induced by MM cells. First, we performed a histological analysis of osteocyte viability on bone biopsies on a cohort of 37 MM patients with symptomatic disease. A significantly higher number of viable osteocytes was detected in patients treated with a bortezomib (BOR)-based regimen compared with those treated without BOR. Interestingly, both osteocyte autophagy and apoptosis were affected in vivo by BOR treatment. Thereafter, we checked the in vitro effect of BOR to understand the mechanisms whereby BOR maintains osteocyte viability in bone from MM patients. We found that osteocyte and preosteocyte autophagic death was triggered during coculturing with MM cells. Our evaluation was conducted by analyzing either autophagy markers microtubule-associated protein light chain 3 beta (LC3B) and SQSTM1/sequestome 1 (p62) levels, or the cell ultrastructure by transmission electron microscopy. PIs were found to increase the basal levels of LC3 expression in the osteocytes while blunting the myeloma-induced osteocyte death. PIs also reduced the autophagic death of osteocytes induced by high-dose dexamethasone (DEX) and potentiated the anabolic effect of PTH(1-34). Our data identify osteocyte autophagy as a new potential target in MM bone disease and support the use of PIs to maintain osteocyte viability and improve bone integrity in MM patients.
The relationship between bone marrow (BM) cytokine and chemokine levels, cytogenetic profiles and skeletal involvement in multiple myeloma (MM) patients is not yet defined. This study investigated a cohort of 455 patients including monoclonal gammopathy of uncertain significance (MGUS), smoldering MM and symptomatic MM patients. Skeletal surveys, positron emission tomography (PET)/computerized tomography (CT) and magnetic resonance imaging (MRI) were used to identify myeloma bone disease. Significantly higher median BM levels of both C-C motif Ligand (CCL)3 and CCL20 were found in MM patients with radiographic evidence of osteolytic lesions as compared with those without, and in all MM patients with positive PET/CT scans. BM levels of CCL3, CCL20, Activin-A and Dickkopf-1 (DKK-1) were significantly higher in patients with high bone disease as compared with patients with low bone disease. Moreover, CCL20 BM levels were significant predictors of osteolysis on X-rays by multivariate logistic analysis. On the other hand, DKK-1 levels were related to the presence of MRI lesions independently of the osteolysis at the X-rays. Our data define the relationship between bone disease and the BM cytokine and chemokine patterns highlighting the tight relationship between CCL20 BM levels and osteolysis in MM.
Among the three classic Philadelphia chromosome-negative myeloproliferative neoplasms, primary myelofibrosis (PMF) is the most severe in terms of disease biology, survival and quality of life. Abnormalities in the process of differentiation of PMF megakaryocytes (MKs) are a hallmark of the disease. Nevertheless, the molecular events that lead to aberrant megakaryocytopoiesis have yet to be clarified. Protein kinase Cɛ (PKCɛ) is a novel serine/threonine kinase that is overexpressed in a variety of cancers, promoting aggressive phenotype, invasiveness and drug resistance. Our previous findings on the role of PKCɛ in normal (erythroid and megakaryocytic commitment) and malignant (acute myeloid leukemia) hematopoiesis prompted us to investigate whether it could be involved in the pathogenesis of PMF MK-impaired differentiation. We demonstrate that PMF megakaryocytic cultures express higher levels of PKCɛ than healthy donors, which correlate with higher disease burden but not with JAK2V617F mutation. Inhibition of PKCɛ function (by a negative regulator of PKCɛ translocation) or translation (by target small hairpin RNA) leads to reduction in PMF cell growth, restoration of PMF MK differentiation and inhibition of PKCɛ-related anti-apoptotic signaling (Bcl-xL). Our data suggest that targeting PKCɛ directly affects the PMF neoplastic clone and represent a proof-of-concept for PKCɛ inhibition as a novel therapeutic strategy in PMF.
Summary A deep elucidation of the mechanisms of action of anti‐CD38 monoclonal antibodies (mAbs), such as daratumumab (DARA), is required to identify patients with multiple myeloma (MM) who are more responsive to this treatment. In the present study, an autologous ex vivo approach was established, focussing on the role of the monocytes in the anti CD38‐mediated killing of MM cells. In bone marrow (BM) samples from 29 patients with MM, we found that the ratio between monocytes (CD14+) and MM cells (CD138+) influences the response to DARA. Further, the exposure of the BM samples to DARA is followed by the formation of a CD138+CD14+ double‐positive (DP) population, that quantitatively correlates with the anti‐MM cells killing. These effects were dependent on the presence of a CD14+CD16+ monocyte subset and on high CD16 expression levels. Lastly, the addition of a mAb neutralising the CD47/signal‐regulatory protein α (SIRPα) axis was able to increase the killing mediated by DARA. The effects were observed only in coincidence with high CD14+:CD138+ ratio, with a significant presence of the DP population and were correlated with CD16 expression. In conclusion, the present study underlines the critical role of the CD16+ monocytes in DARA anti‐MM killing effects and gives a rationale to test the combination of an anti‐CD47 mAb with anti‐CD38 mAbs.
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.