PurposeThe nonalcoholic fatty liver disease is the most common liver abnormality. Up to date, liver biopsy is the reference standard for direct liver steatosis quantification in hepatic tissue samples. In this paper we propose a neural network-based approach for nonalcoholic fatty liver disease assessment in ultrasound.MethodsWe used the Inception-ResNet-v2 deep convolutional neural network pre-trained on the ImageNet dataset to extract high-level features in liver B-mode ultrasound image sequences. The steatosis level of each liver was graded by wedge biopsy. The proposed approach was compared with the hepatorenal index technique and the gray-level co-occurrence matrix algorithm. After the feature extraction, we applied the support vector machine algorithm to classify images containing fatty liver. Based on liver biopsy, the fatty liver was defined to have more than 5% of hepatocytes with steatosis. Next, we used the features and the Lasso regression method to assess the steatosis level.ResultsThe area under the receiver operating characteristics curve obtained using the proposed approach was equal to 0.977, being higher than the one obtained with the hepatorenal index method, 0.959, and much higher than in the case of the gray-level co-occurrence matrix algorithm, 0.893. For regression the Spearman correlation coefficients between the steatosis level and the proposed approach, the hepatorenal index and the gray-level co-occurrence matrix algorithm were equal to 0.78, 0.80 and 0.39, respectively.ConclusionsThe proposed approach may help the sonographers automatically diagnose the amount of fat in the liver. The presented approach is efficient and in comparison with other methods does not require the sonographers to select the region of interest.
A 12-week Nordic Walking training routine improves shoulder mobility and reduces tenderness in the following muscles: trapezius pars descendens and middle trapezius, infraspinatus and latissimus dorsi, in female office workers.
This paper presents autopsy findings of 3 COVID-19 patients randomly selected for post-mortem from two tertiary referral Polish hospitals. Analysis of macroscopic, histopathological findings with clinical features was performed. All 3 deceased patients were Caucasian males (average age 61 years, range from 56 to 68 years). Using real-time polymerase chain reaction assay, the patients were confirmed (antemortem) to have severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Two patients were obese, and 1 patient had type 2 diabetes mellitus. The medical history of 1 patient included hemorrhagic pancreatitis, gangrenous cholecystitis, <i>Acinetobacter baumanii</i> sepsis, and cholecystectomy. Pulmonary embolism was diagnosed in 2 patients. At autopsy, in 1 case, the lungs showed bilateral interstitial pneumonia with diffuse alveolar damage (DAD), while in another case, interstitial pulmonary lymphoid infiltrates and enlarged atypical pneumocytes were present but without DAD. Microthrombi in lung vessels and capillaries were observed in 2 cases. This study revealed thrombotic complications of COVID-19 and interstitial pneumonia with DAD presence as the main autopsy findings in patients with SARS-CoV-2 infection that was confirmed antemortem with molecular tests. Autopsy studies using tissue sections handled in accordance with <i>SARS</i>-CoV-2 biosafety guidelines are urgently needed, especially in the case of subjects who were below the age of 60.
The aim of this literature review is to present a summary of the published literature relating the details of the different modifications of specimen preparation for white matter dissection with the Klingler technique. For this review, 3 independent investigators performed an electronic literature search that was carried out in the Pubmed, Scopus and Web of Science databses up to December 2019. Furthermore, we performed citation tracking for the articles missed in the initial search. Studies were eligible for inclusion when they reported details of at least the first 2 main steps of Klingler’s technique: fixation and freezing. A total of 37 full-text articles were included in the analysis. We included original anatomical studies in which human white matter dissection was performed for study purposes. The main three steps of preparation are the same in each laboratory, but the details of each vary between studies. Ten percent formalin is the most commonly used (34 studies) solution for fixation. The freezing time varied between 8 h and a month, and the temperature varied from − 5 to − 80 °C. After thawing and during dissections, the specimens were most often kept in formalin solution (13), and the concentration varied from 4 to 10%. Klingler’s preparation technique involves three main steps: fixation, freezing and thawing. Even though the details of the technique are different in most of the studies, all provide subjectively good quality specimens for anatomical dissections and studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.