Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology.
Background. A unique genomic difference between human and civet severe acute respiratory syndrome coronaviruses (SARS-CoVs) is that the former has a deletion of 29 nucleotides from open reading frame (orf) 8a that results in the generation of orf8a and orf8b. The objectives of the present study were to analyze antibody reactivity to ORF8a in patients with SARS and to elucidate the function of ORF8a.Methods. Western-blot and immunofluorescent antibody assays were used to detect anti-ORF8a antibody. SARS-CoV HKU39849 was used to infect stable clones expressing ORF8a and cells transfected with small interfering RNA (siRNA). The virus loads (VLs) and cytopathic effects (CPEs) were recorded. Confocal microscopy and several mitochondria-related tests were used to study the function of ORF8a.Results. Two (5.4%) of 37 patients with SARS had anti-ORF8a antibodies. The VLs in the stable clones expressing ORF8a were significantly higher than those in control subjects 5 days after infection. siRNA against orf8a significantly reduced VLs and interrupted the CPE. ORF8a was found to be localized in mitochondria, and overexpression resulted in increases in mitochondrial transmembrane potential, reactive oxygen species production, caspase 3 activity, and cellular apoptosis.Conclusions. ORF8a not only enhances viral replication but also induces apoptosis through a mitochondriadependent pathway.
Size-sieved stem (SS) cells isolated from human bone marrow and propagated in vitro are a population of cells with consistent marker typing, and can form bone, fat, and cartilage. In this experiment, we demonstrated that SS cells could be induced to differentiate into neural cells under experimental cell culture conditions. Five hours after exposure to antioxidant agents (β-mercaptoethanol ± retinoic acid) in serum-free conditions, SS cells expressed the protein for nestin, neuron-specific enolase (NSE), neuron-specific nuclear protein (NeuN), and neuron-specific tubulin-1 (TuJ-1), and the mRNA for NSE and Tau
CISD2 is a causative gene associated with Wolfram syndrome (WFS). However, it remains a mystery as to how the loss of CISD2 causes metabolic defects in patients with WFS. Investigation on the role played by Cisd2 in specific cell types may help us to resolve these underlying mechanisms. White adipose tissue (WAT) is central to the maintenance of energy metabolism and glucose homeostasis in humans. In this study, adipocyte-specific Cisd2 knockout (KO) mice showed impairment in the development of epididymal WAT (eWAT) in the cell autonomous manner. A lack of Cisd2 caused defects in the biogenesis and function of mitochondria during differentiation of adipocytes in vitro. Insulin-stimulated glucose uptake and secretion of adiponectin by the Cisd2 KO adipocytes were decreased. Moreover, Cisd2 deficiency increased the cytosolic level of Ca(2+) and induced Ca(2+)-calcineurin-dependent signaling that inhibited adipogenesis. Importantly, Cisd2 was found to interact with Gimap5 on the mitochondrial and ER membranes and thereby modulate mitochondrial Ca(2+) uptake associated with the maintenance of intracellular Ca(2+) homeostasis in adipocytes. Thus, it would seem that Cisd2 plays an important role in intracellular Ca(2+) homeostasis, which is required for the differentiation and functioning of adipocytes as well as the regulation of glucose homeostasis in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.