Background
Idiopathic pulmonary fibrosis is characterized by loss of lung epithelial cells and inexorable progression of fibrosis with no effective and approved treatments. The distal airway stem/progenitor cells (DASCs) have been shown to have potent regenerative capacity after lung injury. In this work, we aimed to define the role of mouse DASCs (mDASCs) in response to bleomycin-induced lung fibrosis in mice.
Methods
The mDASCs were isolated, expanded in vitro, and labeled with GFP by lentiviral infection. The labeled mDASCs were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice on day 7. Pathological change, collagen content, α-SMA expression, lung function, and mortality rate were assessed at 7, 14, and 21 days after bleomycin administration. Tissue section and direct fluorescence staining was used to show the distribution and differentiation of mDASCs in lung.
Results
The transplanted mDASCs could incorporate, proliferate, and differentiate into type I pneumocytes in bleomycin-injured lung. They also inhibited fibrogenesis by attenuating the deposition of collagen and expression of α-SMA. In addition, mDASCs improved pulmonary function and reduce mortality in bleomycin-induced pulmonary fibrosis mice.
Conclusions
The data strongly suggest that mDASCs could ameliorate bleomycin-induced pulmonary fibrosis by promotion of lung regeneration and inhibition of lung fibrogenesis.
Electronic supplementary material
The online version of this article (10.1186/s13287-019-1257-2) contains supplementary material, which is available to authorized users.
Topoisomerase 1 (Top1) inhibitor is an effective anticancer drug, but several factors limit its clinical application such as drug inactivation, tyrosyl-DNA phosphodiesterase 1 (Tdp1)-mediated tumor drug resistance, and its toxicity. Our previous study identified pterostilbene (PTE) and resveratrol (RE) to suppress these two proteins by binding to their active center. PTE and RE could inhibit the proliferation of various colorectal cancer cells, induce cell apoptosis, and make cell cycle stay in G2/M phase in vitro. PTE and RE could decrease Top1 and Tdp1 contents and mRNA expression in wild-type, constructed Tdp1 overexpressing CL187, Top1- or Tdp1- silenced CL187 cell lines. PTE exhibited excellent antitumor activity in subcutaneous CL187 transplantation model (TGI = 79.14 ± 2.85%, 200 mg/kg, i.p.) and orthotopic transplantation model (TGI = 76.57 ± 6.34%, 100 mg/kg, i.p.; TGI = 72.79 ± 4.06%, 500 mg/kg, i.g.) without significant toxicity. PTE had no significant inhibitory effect on non-tumor cell proliferation in vitro and would not induce damage to liver, kidney, and other major organs. Overall, PTE and RE can inhibit the activity of Top1 enzyme and inhibit the DNA damage repair pathway mediated by Top1/Tdp1, and can effectively inhibit colorectal cancer development with low toxicity, thus they have great potential to be developed into a new generation of anti-tumor drugs.
Microfluidics has become recognized as a powerful platform technology associated with a constantly increasing array of applications across the life sciences. This surge of interest over recent years has led to an increased demand for microfluidic chips, resulting in more time being spent in the cleanroom fabricating devices using soft lithography-a slow and expensive process that requires extensive materials, training and significant engineering resources. This bottleneck limits platform complexity as a by-product of lengthy delays between device iterations and impacts on the time spent developing the final application. To address this problem we report a new, rapid and economical approach to microfluidic device fabrication using dry resist films to laminate laser cut sheets of acrylic. We term our method laser lithography and show that our technique can be used to engineer 200 µm wide channels for assembling droplet generators capable of generating monodisperse water droplets in oil and micromixers designed to sustain chemical reactions. Our devices offer high transparency, negligible device-to-device variation, and low X-ray background scattering, demonstrating their suitability for real-time X-ray-based characterization applications. Our approach also requires minimal materials and apparatus, is cleanroom-free and at a cost of around $1.00 per chip, could significantly democratize device fabrication, thereby increasing the interdisciplinary accessibility of microfluidics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.