Highlights d Serum concentrations of 4-cresol are inversely correlated with type 2 diabetes d Non-toxic dose of 4-cresol reduces adiposity, glucose intolerance, and liver fat d 4-Cresol stimulates insulin secretion and b-cell proliferation in vivo and in vitro d 4-Cresol downregulates pancreatic and islet expression of the kinase DYRK1A
Aims/hypothesis Drug and surgical-based therapies in type 2 diabetes are associated with altered gut microbiota architecture. Here we investigated the role of the gut microbiome in improved glucose homeostasis following bariatric surgery. Methods We carried out gut microbiome analyses in gastrectomised (by vertical sleeve gastrectomy [VSG]) rats of the Goto-Kakizaki (GK) non-obese model of spontaneously occurring type 2 diabetes, followed by physiological studies in the GK rat. Results VSG in the GK rat led to permanent improvement of glucose tolerance associated with minor changes in the gut microbiome, mostly characterised by significant enrichment of caecal Prevotella copri. Gut microbiota enrichment with P. copri in GK rats through permissive antibiotic treatment, inoculation of gut microbiota isolated from gastrectomised GK rats, and direct inoculation of P. copri, resulted in significant improvement of glucose tolerance, independent of changes in body weight. Plasma bile acids were increased in GK rats following inoculation with P. copri and P. copri-enriched microbiota from VSG-treated rats; the inoculated GK rats then showed increased liver glycogen and upregulated expression of Fxr (also known as Nr1h4), Srebf1c, Chrebp (also known as Mlxipl) and Il10 and downregulated expression of Cyp7a1. Conclusions Our data underline the impact of intestinal P. copri on improved glucose homeostasis through enhanced bile acid metabolism and farnesoid X receptor (FXR) signalling, which may represent a promising opportunity for novel type 2 diabetes therapeutics.
High-density lipoprotein (HDL) possesses multiple biological activities; small, dense HDL3c particles displaying distinct lipidomic composition exert potent antiatherogenic activities which can be compromised in dyslipidemic, hyperglycemic insulin-resistant states. However, it remains indeterminate (i) whether such functional HDL deficiency is related to altered HDL composition, and (ii) whether it originates from atherogenic dyslipidemia, dysglycemia, or both. In the present work we analyzed compositional characteristics of HDL subpopulations and functional activity of small, dense HDL3c particles in treatment-naïve patients with well-controlled (n=10) and poorly-controlled (n=8) type 2 diabetes (T2D) and in normolipidemic age- and sex-matched controls (n=11). Our data reveal that patients with both well- and poorly-controlled T2D displayed dyslipidemia and low-grade inflammation associated with altered HDL composition. Such compositional alterations in small, dense HDL subfractions were specifically correlated with plasma HbA1c levels. Further analysis using a lipidomic approach revealed that small, dense HDL3c particles from T2D patients with poor glycemic control displayed additional modifications of their chemical composition. In parallel, antioxidative activity of HDL3c towards oxidation of low-density lipoprotein was diminished. These findings indicate that defective functionality of small, dense HDL particles in patients with T2D is not only affected by the presence of atherogenic dyslipidemia, but also by the level of glycemic control, reflecting compositional alterations of HDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.