Some cases of Alzheimer's disease are inherited as an autosomal dominant trait. Genetic linkage studies have mapped a locus (AD3) associated with susceptibility to a very aggressive form of Alzheimer's disease to chromosome 14q24.3. We have defined a minimal cosegregating region containing the AD3 gene, and isolated at least 19 different transcripts encoded within this region. One of these transcripts (S182) corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein. Five different missense mutations have been found that cosegregate with early-onset familial Alzheimer's disease. Because these changes occurred in conserved domains of this gene, and are not present in normal controls, they are likely to be causative of AD3.
We report the cloning of a novel gene (E5-1) encoded on chromosome 1 which has substantial nucleotide and amino-acid sequence similarity to the S182 gene on chromosome 14q24.3. Mutations, including three new missense mutations in the S182 gene, are associated with the AD3 subtype of early-onset familial Alzheimer's disease (AD). Both the E5-1 and the S182 proteins are predicted to be integral membrane proteins with seven membrane-spanning domains, and a large exposed loop between the sixth and seventh transmembrane domains. Analysis of the nucleotide sequence of the open reading frame (ORF) of the E5-1 gene led to the discovery of two missense substitutions at conserved amino-acid residues in affected members of pedigrees with a form of familial AD that has a later age of onset than the AD3 subtype (50-70 years versus 30-60 years for AD3). These observations imply that the E5-1 gene on chromosome 1 and the S182 gene on chromosome 14q24.3 are members of a family of genes (presenilins) with related functions, and indicates that mutations in conserved residues of E5-1 could also play a role in the genesis of AD. Our results also indicate that still other AD susceptibility genes exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.