Due to the presence of cationic units interpolyelectrolyte complexes (IPECs) can be used as a universal basis for preparation of biocidal coatings on different surfaces. Metallopolymer nanocomposites were successfully synthesized in irradiated solutions of polyacrylic acid (PAA) and polyethylenimine (PEI), and dispersions of non-stoichiometric IPECs of PAA–PEI containing silver ions. The data from turbidimetric titration and dynamic light scattering showed that pH 6 is the optimal value for obtaining IPECs. Metal polymer complexes based on IPEC with a PAA/PEI ratio equal to 3/1 and 1/3 were selected for synthesis of nanocomposites due to their aggregative stability. Studies using methods of UV–VIS spectroscopy and TEM have demonstrated that the size and spatial organization of silver nanoparticles depend on the composition of polymer systems. The average sizes of nanoparticles are 5 nm and 20 nm for complexes with a molar ratio of PAA/PEI units equal to 3/1 and 1/3, respectively. The synthesized nanocomposites were applied to the glass surface and exhibited high antibacterial activity against both gram-positive (Staphylococcus aureus) and gram-negative bacteria (Salmonella). It is shown that IPEC-Ag coatings demonstrate significantly more pronounced biocidal activity not only in comparison with macromolecular complexes of PAA–PEI, but also coatings of PEI and PEI based nanocomposites.
Totally, 45 L. monocytogenes strains isolated from meat, poultry, dairy, and fish products in the Central European part of Russia in 2001–2005 and 2019–2020 were typed using a combined MLST and internalin profile (IP) scheme. Strains belonged to 14 clonal complexes (CCs) of the phylogenetic lineages I and II. Almost half of the strains (20 of 45) belonged to six CCs previously recognized as epidemic clones (ECs). ECI and ECV strains were isolated during both studied periods, and ECII, ECIV, ECVI, and ECVII strains were isolated in 2001–2005, but not in 2019–2020. ECI, ECIV, ECV, and ECVII strains were isolated from products of animal origin. ECII and ECVI were isolated from fish. Testing of invasion efficiencies of 10 strains isolated in different years and from different sources and belonging to distinct CCs revealed a statistically significant difference between phylogenetic lineage I and II strains but not between ECs and non-EC CCs or strains differing by year and source of isolation. Strains isolated in 2001–2005 were characterized by higher phylogenetic diversity and greater presentation of ECs and CCs non-typical for natural and anthropogenic environments of the European part of Russia comparatively to isolates obtained in 2019–2020.Closing of the Russian market in 2019–2020 for imported food might be responsible for these differences.
Positively charged polyelectrolytes hold significant potential as materials for creating antibacterial coatings. We examined the physicochemical and mechanical properties of the macromolecules in water solutions and in coatings for the series of branched polyethyleneimine (PEI) and linear polydiallyldimethylammonium chloride (PDADMAC) with different molecular weights. The microbiological study was conducted to analyze the biocidal activity of the polycation solutions and coatings towards foodborne bacteria. While the moisture saturation of the polycationic coatings and biocidal activity did not significantly depend on the chemical nature of charged groups or the molecular weight or architecture of macromolecules, the lowering of the molecular weight of polymers resulted in the loss of cohesive forces in the coatings and to a dramatic loss of stability when being washed off with water. The diffusion coefficient (D0) of macromolecules was identified as a key parameter for the wash-off mechanism. Films formed by molecules with a D0 below 1 × 10−7 cm2/s demonstrated a high resistance to wash-off procedures. We demonstrated that PEI and PDADMAC samples with high molecular weights showed high antimicrobial activity towards L. monocytogenes. Our results highlight the importance of macromolecule characteristics in the development of new biocidal coatings based on polycations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.