We use a modified version of the halo-based group finder developed by Yang et al. to select galaxy groups from the Sloan Digital Sky Survey (SDSS DR4). In the first step, a combination of two methods is used to identify the centers of potential groups and to estimate their characteristic luminosity. Using an iterative approach, the adaptive group finder then uses the average mass-to-light ratios of groups, obtained from the previous iteration, to assign a tentative mass to each group. This mass is then used to estimate the size and velocity dispersion of the underlying halo that hosts the group, which in turn is used to determine group membership in redshift space. Finally, each individual group is assigned two different halo masses: one based on its characteristic luminosity, and the other based on its characteristic stellar mass. Applying the group finder to the SDSS DR4, we obtain 301237 groups in a broad dynamic range, including systems of isolated galaxies. We use detailed mock galaxy catalogues constructed for the SDSS DR4 to test the performance of our group finder in terms of completeness of true members, contamination by interlopers, and accuracy of the assigned masses. This paper is the first in a series and focuses on the selection procedure, tests of the reliability of the group finder, and the basic properties of the group catalogue (e.g. the mass-to-light ratios, the halo mass to stellar mass ratios, etc.). The group catalogues including the membership of the groups are available at these links 1 . Subject headings: dark matter -large-scale structure of the universe -galaxies: halos -methods: statistical 1 Shanghai Astronomical Observatory, the Partner Group of MPA,
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10 9 M to z ≈ 2, reaching the knee of the ultraviolet luminosity function of galaxies to z ≈ 8. The survey covers approximately 800 arcmin 2 and is divided into two parts. The CANDELS/Deep survey (5σ point-source limit H = 27.7 mag) covers ∼125 arcmin 2 within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5σ pointsource limit of H 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding-cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z ∼ 1.5 − 8, and to study Type Ia SNe beyond z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ∼ 125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ∼ 800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
We present the evolution of the luminosity-size and stellar massYsize relations of luminous (L V k 3:4 ; 10 10 h À2 70 L) and massive (M Ã k 3 ; 10 10 h À2 70 M) galaxies in the last $11 Gyr. We use very deep near-infrared images of the Hubble Deep FieldYSouth and the MS 1054-03 field in the J s , H, and K s bands from FIRES to retrieve the sizes in the optical rest frame for galaxies with z > 1. We combine our results with those from GEMS at 0:2 < z < 1 and SDSS at z $ 0:1 to achieve a comprehensive picture of the optical rest-frame size evolution from z ¼ 0 to 3. Galaxies are differentiated according to their light concentration using the Sérsic index n. For less concentrated objects, the galaxies at a given luminosity were typically $3 AE 0:5 (AE2) times smaller at z $ 2:5 than those we see today. The stellar massYsize relation has evolved less: the mean size at a given stellar mass was $2 AE 0:5 times smaller at z $ 2:5, evolving proportionally to (1 þ z) À0:40AE0:06. Simple scaling relations between dark matter halos and baryons in a hierarchical cosmogony predict a stronger (although consistent within the error bars) than observed evolution of the stellar massYsize relation. The observed luminosity-size evolution out to z $ 2:5 matches well recent infall model predictions for Milky WayYtype objects. For low-n galaxies, the evolution of the stellar massYsize relation would follow naturally if the individual galaxies grow inside out. For highly concentrated objects, the situation is as follows: at a given luminosity, these galaxies were $2:7 AE 1:1 times smaller at z $ 2:5 (or, put differently, were typically $2:2 AE 0:7 mag brighter at a given size than they are today), and at a given stellar mass the size has evolved proportionally to (1 þ z) À0:45AE0:10 .
We present a first analysis of deep 24 m observations with the Spitzer Space Telescope of a sample of nearly 1500 galaxies in a thin redshift slice, 0:65 z < 0:75. We combine the infrared data with redshifts, rest-frame luminosities, and colors from COMBO-17 and with morphologies from Hubble Space Telescope images collected by the Galaxy Evolution from Morphology and SEDs (GEMS) and Great Observatories Origins Deep Survey (GOODS) projects. To characterize the decline in star formation rate (SFR) since z $ 0:7, we estimate the total thermal IR luminosities, SFRs, and stellar masses for the galaxies in this sample. At z $ 0:7, nearly 40% of intermediate-and high-mass galaxies (with stellar masses !2 ; 10 10 M ) are undergoing a period of intense star formation above their past-averaged SFR. In contrast, less than 1% of equally massive galaxies in the local universe have similarly intense star formation activity. Morphologically undisturbed galaxies dominate the total infrared luminosity density and SFR density: at z $ 0:7, more than half of the intensely star-forming galaxies have spiral morphologies, whereas less than $30% are strongly interacting. Thus, a decline in major merger rate is not the underlying cause of the rapid decline in cosmic SFR since z $ 0:7. Physical properties that do not strongly affect galaxy morphology-for example, gas consumption and weak interactions with small satellite galaxies-appear to be responsible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.