Massive evolved stars in transition phases, such as luminous blue variables (LBVs), B[e] supergiants (B[e]SGs), and yellow hypergiants (YHGs), are not well understood, and yet crucial steps in determining accurate stellar and galactic evolution models. The circumstellar environments of these stars reveal their mass-loss history, identifying clues to both their individual evolutionary status and the connection between objects of different phases. Here we present a survey of 25 such evolved massive stars (16 B[e]SGs, 6 LBVs, 2 YHGs, and 1 Peculiar Oe star), observed in the K-band with the Spectrograph for INtegral Field Observation in the Near-Infrared (SINFONI; R = 4500) on the ESO VLT UT4 8 m telescope. The sample can be split into two categories based on spectral morphology: one group includes all of the B[e]SGs, the Peculiar Oe star, and two of the LBVs, while the other includes the YHGs and the rest of the LBVs. The difference in LBV spectral appearance is due to some objects being in a quiescent phase and some objects being in an active or outburst phase. CO emission features are found in 13 of our targets, with first time detections for MWC 137, LHA 120-S 35, and LHA 115-S 65. From model fits to the CO band heads, the emitting regions appear to be detached from the stellar surface. Each star with 12 CO features also shows 13 CO emission, signaling an evolved nature. Based on the level of 13 C enrichment, we conclude that many of the B[e]SGs are likely in a pre-Red Supergiant phase of their evolution. There appears to be a lower luminosity limit of log L/L = 5.0 below which CO is not detected. The lack of CO features in several high luminosity B[e]SGs and variability in others suggests that they may in fact be LBV candidates, strengthening the connection between these two very similar transition phases.
The Javalambre Photometric Local Universe Survey (J-PLUS ) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg 2 mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 Å). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB ∼21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the δ z/(1 + z) ∼ 0.005-0.03 precision level) for moderately bright (up to r ∼ 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O ii]/λ3727, Hα/λ6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first ∼1000 deg 2 of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg 2 for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey.Article published by EDP Sciences A176, page 1 of 25
The disc formation mechanism of B[e] supergiants is one of the puzzling phenomena in massive star evolution. Rapid stellar rotation seems to play an important role for the non-spherically symmetric mass-loss leading to a high-density disc-or ring-like structure of neutral material around these massive and luminous objects. The radial density and temperature structure as well as the kinematics within this high-density material are, however, not well studied. Based on the high-resolution optical spectra of a sample of B[e] supergiants in the Magellanic Clouds we especially searched for tracers of the kinematics within their discs. Besides the well-known [O I] lines, we discovered the [Ca II] λλ7291, 7324 lines which can be used as a complementary set of disc tracers. We find that these lines originate from very high density regions, located closer to the star than the [O I] λ5577 line-forming region. The line profiles of both the [O I] and the [Ca II] lines indicate that the discs or rings of high-density material are in Keplerian rotation. We estimate plausible ranges of disc inclination angles for the sample of B[e] supergiants and suggest that the star LHA 120-S 22 might have a spiral arm rather than a disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.