A detailed localization of elements in leaf tissues of the field-collected Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae) growing at a highly metal-polluted site was determined by micro-proton-induced X-ray emission (micro-PIXE) in order to reveal and compare nutrient and non-essential element accumulation patterns in the case of multiple metal accumulation within particular leaf tissues, including the detailed distribution between apoplast and symplast regions. On the larger scans, the highest concentrations of metals were observed in the epidermis, S and Ca in the palisade mesophyll, Cl in the spongy mesophyll and vascular bundles, and P and K in the vascular bundles. On the more detailed scans, the highest Cd, Pb, Cl and K concentrations were observed in vascular bundle collenchyma. The relative element distribution (%) was calculated based on concentrations of elements in particular leaf tissues and their relative weight portions, indicating that most of the accumulated Zn was located in epidermises, while the majority of Cd and Pb was distributed within the mesophyll. Detailed scans of epidermal/mesophyll tissues revealed that Zn was mainly accumulated and detoxified in the symplast of large vacuolated epidermal cells, Cd in the mesophyll symplast, and Pb in the mesophyll symplast and apoplast.
Summary• Localization of cadmium (Cd) and other elements was studied in the leaves of the field-collected cadmium/zinc (Cd/Zn) hyperaccumulator Thlaspi praecox from an area polluted with heavy metals near a lead mine and smelter in Slovenia, using micro-PIXE (proton-induced X-ray emission).• The samples were prepared using cryofixation. Quantitative elemental maps and average concentrations in whole-leaf cross-sections and selected tissues were obtained.• Cd was preferentially localized in the lower epidermis (820 µg g -1 DW), vascular bundles and upper epidermis, whereas about twice the lower concentrations were found in the mesophyll.• Taking into account the large volume of the mesophyll compared with the epidermis, the mesophyll is indicated as a relatively large pool of Cd, possibly involved in Cd detoxification/dilution at the tissue and cellular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.