A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H → γγ and H → ZZ → 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m H ¼ 125.09 AE 0.21 ðstatÞ AE 0.11 ðsystÞ GeV. DOI: 10.1103/PhysRevLett.114.191803 PACS numbers: 14.80.Bn, 13.85.Qk The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the standard model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H [1-6], whose mass m H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs-boson-like properties and a mass of about 125 GeV [7][8][9]. The discovery was based primarily on mass peaks observed in the γγ and ZZ → l þ l − l 0þ l 0−(denoted H → ZZ → 4l for simplicity) decay channels, where one or both of the Z bosons can be off shell and where l and l 0 denote an electron or muon. With m H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be predicted. Increasingly precise measurements [10][11][12][13] have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.The ATLAS and CMS Collaborations have independently measured m H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb −1 of integrated luminosity at ffiffi ffi s p ¼ 7 TeV, and 20 fb −1 at ffiffi ffi s p ¼ 8 TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. [12,[14][15][16].This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m H . Besides its intrinsic importance as a fundamental parameter, improved knowledge of m H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m H is related to the values of the masses of the W boson and top quark through loopinduced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM [17] and thus to search for evidence of physics beyond the SM.The combination is performed usin...
This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at TeV in 2015. Using a large sample of and decays from 3.2 fb of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to over most of the covered phase space ( and GeV). The isolation efficiency varies between 93 and depending on the selection applied and on the momentum of the muon. Both efficiencies are well reproduced in simulation. In the central region of the detector, the momentum resolution is measured to be () for muons from () decays, and the momentum scale is known with an uncertainty of . In the region , the resolution for muons from decays is while the precision of the momentum scale for low- muons from decays is about .
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √ s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb −1 . Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first-and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and µ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Studies of the spin, parity and tensor couplings of the Higgs boson in the , and decay processes at the LHC are presented. The investigations are based on of pp collision data collected by the ATLAS experiment at TeV and TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers , is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the and decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb −1 of proton-proton collision data at √ s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider.No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.Keywords: Supersymmetry, Hadron-Hadron Scattering The ATLAS collaboration 33 IntroductionSupersymmetry (SUSY) [1][2][3][4][5][6][7][8][9] is a spacetime symmetry that postulates for each Standard Model (SM) particle the existence of a partner particle whose spin differs by one-half unit. The introduction of these new particles provides a potential solution to the hierarchy problem [10][11][12][13]. If R-parity is conserved [14][15][16][17][18], as is assumed in this paper, SUSY particles are always produced in pairs and the lightest supersymmetric particle (LSP) emerges as a stable dark-matter candidate.-1 - JHEP05(2014)071The charginos and neutralinos are mixtures of the bino, winos and higgsinos that are superpartners of the U(1), SU(2) gauge bosons and the Higgs bosons, respectively. Their mass eigenstates are referred to asχ ± i (i = 1, 2) andχ 0 j (j = 1, 2, 3, 4) in the order of increasing masses. Even though the gluinos and squarks are produced strongly in pp collisions, if the masses of the gluinos and squarks are large, the direct production of charginos, neutralinos and sleptons through electroweak interactions may dominate the production of SUSY particles at the Large Hadron Collider (LHC). Such a scenario is possible in the general framework of the phenomenological minimal supersymmetric SM (pMSSM) [19][20][21]. Naturalness suggests that third-generation sparticles and some of the charginos and neutralinos should have masses of a few hundred GeV [22,23]. Light sleptons are expected in gauge-mediated [24][25][26][27][28][29] and anomaly-mediated [30,31] SUSY breaking scenarios. Light sleptons could also play a role in the co-annihilation of neutralinos, allowing a dark matter relic density consistent with cosmological observations [32,33]. This paper presents searches for electroweak production of charginos, neutralinos and sleptons using 20.3 fb −1 of proton-proton collision data with a centre-of-mass energy √ s = 8 TeV collected at the LHC with the ATLAS detector. The searches target final states with two oppositely-charged leptons (electrons or muons) and missing transverse momentum. Similar searches [34,35] SUSY scenariosSimplified models [42] are considered for optimization of the event selection and interpretation of the results. The LSP is the lightest neutralinoχ 0 1 in all SUSY scenarios considered, except in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.