Previous investigations about the darkening of chrome yellow pigments revealed that this form of alteration is attributable to a reduction of the original Cr(VI) to Cr(III), and that the presence of sulfur-containing compounds, most often sulfates, plays a key role during this process. We recently demonstrated that different crystal forms of chrome yellow pigments (PbCrO(4) and PbCr(1-x)S(x)O(4)) are present in paintings by Vincent van Gogh. In the present work, we show how both the chemical composition and the crystalline structure of lead chromate-based pigments influence their stability. For this purpose, oil model samples made with in-house synthesized powders of PbCrO(4) and PbCr(1-x)S(x)O(4) were artificially aged and characterized. We observed a profound darkening only for those paint models made with PbCr(1-x)S(x)O(4), rich in SO(4)(2-) (x ≥ 0.4), and orthorhombic phases (>30 wt %). Cr and S K-edge micro X-ray absorption near edge structure investigations revealed in an unequivocal manner the formation of up to about 60% of Cr(III)-species in the outer layer of the most altered samples; conversely, independent of the paint models' chemical composition, no change in the S-oxidation state was observed. Analyses employing UV-visible diffuse reflectance and Fourier transform infrared spectroscopy were performed on unaged and aged model samples in order to obtain additional information on the physicochemical changes induced by the aging treatment.
Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials such as graphene and topological insulators. Dirac electrons are characterized by notable properties such as a high mobility, a tunable density and, in topological insulators, a protection against backscattering through the spin–momentum locking mechanism. All those properties make graphene and topological insulators appealing for plasmonics applications. However, Dirac electrons are expected to present also a strong nonlinear optical behaviour. This should mirror in phenomena such as electromagnetic-induced transparency and harmonic generation. Here we demonstrate that in Bi2Se3 topological insulator, an electromagnetic-induced transparency is achieved under the application of a strong terahertz electric field. This effect, concomitantly determined by harmonic generation and charge-mobility reduction, is exclusively related to the presence of Dirac electron at the surface of Bi2Se3, and opens the road towards tunable terahertz nonlinear optical devices based on topological insulator materials.
One-pot self-assembled hybrid films were synthesized by the cohydrolysis of methyltriethoxysilane and tetraethoxysilane and deposited via dip-coating. The films show a high "defect-free" mesophase organization that extends throughout the film thickness and for domains of a micrometer scale, as shown by scanning transmission electron microscopy. We have defined these films defect-free to describe the high degree of order that is achieved without defects in the pore organization, such as dislocations of pores or stacking faults. A novel mesophase, which is tetragonal I4/mmm (space group), is observed in the films. This phase evolves but retains the same symmetry throughout a wide range of temperatures of calcination. The thermal stability and the structural changes as a function of the calcination temperature have been studied by small-angle X-ray scattering, scanning transmission electron microscopy, and Fourier transform infrared spectroscopy. In situ Fourier transform infrared spectroscopy employing synchrotron radiation has been used to study the kinetics of film formation during the deposition. The experiments have shown that the slower kinetics of silica species can explain the high degree of organization of the mesostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.