Inherited KIF1B loss-of-function mutations in neuroblastomas and pheochromocytomas implicate the kinesin KIF1B as a 1p36.2 tumor suppressor. However, the mechanism of tumor suppression is unknown. We found that KIF1B isoform β (KIF1Bβ) interacts with RNA helicase A (DHX9), causing nuclear accumulation of DHX9, followed by subsequent induction of the proapoptotic XIAP-associated factor 1 (XAF1) and, consequently, apoptosis. Pheochromocytoma and neuroblastoma arise from neural crest progenitors that compete for growth factors such as nerve growth factor (NGF) during development. KIF1Bβ is required for developmental apoptosis induced by competition for NGF. We show that DHX9 is induced by and required for apoptosis stimulated by NGF deprivation. Moreover, neuroblastomas with chromosomal deletion of 1p36 exhibit loss of KIF1Bβ expression and impaired DHX9 nuclear localization, implicating the loss of DHX9 nuclear activity in neuroblastoma pathogenesis.
SIGNIFICANCE:KIF1Bβ has neuroblastoma tumor-suppressor properties and promotes and requires nuclear-localized DHX9 for its apoptotic function by activating XAF1 expression. Loss of KIF1Bβ alters subcellular localization of DHX9 and diminishes NGF dependence of sympathetic neurons, leading to reduced culling of neural progenitors, and, therefore, might predispose to tumor formation. Cancer Discov; 4(4); 434-51.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.